BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 16615759)

  • 41. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of noise sources for amperometric measurement of quantal exocytosis using microelectrodes.
    Yao J; Gillis KD
    Analyst; 2012 Jun; 137(11):2674-81. PubMed ID: 22540116
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fabrication of reversibly adhesive fluidic devices using magnetism.
    Rafat M; Raad DR; Rowat AC; Auguste DT
    Lab Chip; 2009 Oct; 9(20):3016-9. PubMed ID: 19789760
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Calcium signaling and exocytosis in adrenal chromaffin cells.
    García AG; García-De-Diego AM; Gandía L; Borges R; García-Sancho J
    Physiol Rev; 2006 Oct; 86(4):1093-131. PubMed ID: 17015485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling of electrochemistry and fluorescence microscopy at indium tin oxide microelectrodes for the analysis of single exocytotic events.
    Amatore C; Arbault S; Chen Y; Crozatier C; Lemaître F; Verchier Y
    Angew Chem Int Ed Engl; 2006 Jun; 45(24):4000-3. PubMed ID: 16683291
    [No Abstract]   [Full Text] [Related]  

  • 47. Microelectrode Arrays of Diamond-Insulated Graphitic Channels for Real-Time Detection of Exocytotic Events from Cultured Chromaffin Cells and Slices of Adrenal Glands.
    Picollo F; Battiato A; Bernardi E; Marcantoni A; Pasquarelli A; Carbone E; Olivero P; Carabelli V
    Anal Chem; 2016 Aug; 88(15):7493-9. PubMed ID: 27376596
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Study on temperature measurement and control for microfluidic systems].
    Dai J; Fan XF; Fang J; Xu ZR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jan; 28(1):148-52. PubMed ID: 18422140
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Selective detection of a catecholamine against electroactive interferents using an interdigitated heteroarray electrode consisting of a metal oxide electrode and a metal band electrode.
    Hayashi K; Iwasaki Y; Horiuchi T; Sunagawa K; Tate A
    Anal Chem; 2005 Aug; 77(16):5236-42. PubMed ID: 16097764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells.
    Gutiérrez LM; Gil A; Viniegra S
    Eur J Cell Biol; 1998 Aug; 76(4):274-8. PubMed ID: 9765057
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electroporation followed by electrochemical measurement of quantal transmitter release from single cells using a patterned microelectrode.
    Ghosh J; Liu X; Gillis KD
    Lab Chip; 2013 Jun; 13(11):2083-90. PubMed ID: 23598689
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis.
    Jha SK; Chand R; Han D; Jang YC; Ra GS; Kim JS; Nahm BH; Kim YS
    Lab Chip; 2012 Nov; 12(21):4455-64. PubMed ID: 22960653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis.
    Yamamoto T; Fujii T; Nojima T
    Lab Chip; 2002 Nov; 2(4):197-202. PubMed ID: 15100810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.
    Meunier A; Fulcrand R; Darchen F; Guille Collignon M; Lemaître F; Amatore C
    Biophys Chem; 2012 Mar; 162():14-21. PubMed ID: 22257976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contact photolithography-free integration of patterned and semi-transparent indium tin oxide stimulation electrodes into polydimethylsiloxane-based heart-on-a-chip devices for streamlining physiological recordings.
    Yip JK; Sarkar D; Petersen AP; Gipson JN; Tao J; Kale S; Rexius-Hall ML; Cho N; Khalil NN; Kapadia R; McCain ML
    Lab Chip; 2021 Feb; 21(4):674-687. PubMed ID: 33439202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Electrically modulated attachment and detachment of animal cells cultured on an optically transparent patterning electrode.
    Koyama S
    J Biosci Bioeng; 2011 May; 111(5):574-83. PubMed ID: 21277827
    [TBL] [Abstract][Full Text] [Related]  

  • 59. AAO-CNTs electrode on microfluidic flow injection system for rapid iodide sensing.
    Phokharatkul D; Karuwan C; Lomas T; Nacapricha D; Wisitsoraat A; Tuantranont A
    Talanta; 2011 Jun; 84(5):1390-5. PubMed ID: 21641457
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterizing the catecholamine content of single mammalian vesicles by collision-adsorption events at an electrode.
    Dunevall J; Fathali H; Najafinobar N; Lovric J; Wigström J; Cans AS; Ewing AG
    J Am Chem Soc; 2015 Apr; 137(13):4344-6. PubMed ID: 25811247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.