These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16615764)

  • 1. Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation.
    Kantak AS; Srinivas M; Gale BK
    Anal Chem; 2006 Apr; 78(8):2557-64. PubMed ID: 16615764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method for effective field measurements in electrical field-flow fractionation.
    Merugu S; Sant HJ; Gale BK
    Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a microscale cyclical electrical field flow fractionation system.
    Kantak A; Srinivas M; Gale B
    Lab Chip; 2006 May; 6(5):645-54. PubMed ID: 16652180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved theory of cyclical electrical field flow fractionation.
    Kantak A; Merugu S; Gale BK
    Electrophoresis; 2006 Jul; 27(14):2833-43. PubMed ID: 16850427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of cyclical electrical field flow fractionation.
    Srinivas M; Sant HJ; Gale BK
    Electrophoresis; 2010 Oct; 31(20):3372-9. PubMed ID: 20922757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclical electrical field flow fractionation.
    Gale BK; Srinivas M
    Electrophoresis; 2005 May; 26(9):1623-32. PubMed ID: 15800965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticle characterization by cyclical electrical field-flow fractionation.
    Gigault J; Gale BK; Le Hecho I; Lespes G
    Anal Chem; 2011 Sep; 83(17):6565-72. PubMed ID: 21774534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of polymerized liposomes using a combination of dc and cyclical electrical field-flow fractionation.
    Sant HJ; Chakravarty S; Merugu S; Ferguson CG; Gale BK
    Anal Chem; 2012 Oct; 84(19):8323-9. PubMed ID: 22928609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation.
    Neubauer E; v d Kammer F; Hofmann T
    J Chromatogr A; 2011 Sep; 1218(38):6763-73. PubMed ID: 21855877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Ionic and Nonionic Carriers in Electrical Field-Flow Fractionation.
    Ornthai M; Siripinyanond A; Gale BK
    Anal Chem; 2016 Feb; 88(3):1794-803. PubMed ID: 26708115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biased cyclical electrical field-flow fractionation for separation of submicron particles.
    Ornthai M; Siripinyanond A; Gale BK
    Anal Bioanal Chem; 2016 Jan; 408(3):855-63. PubMed ID: 26612733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation.
    Shiri F; Petersen KE; Romanov V; Zou Q; Gale BK
    Anal Bioanal Chem; 2020 Mar; 412(7):1563-1572. PubMed ID: 31938845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retention behavior of microparticles in gravitational field-flow fractionation (GrFFF): effect of ionic strength.
    Woo IS; Jung EC; Lee S
    Talanta; 2015 Jan; 132():945-53. PubMed ID: 25476401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles.
    Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK
    Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a microscale thermal-electrical field-flow fractionation system.
    Sant HJ; Gale BK
    J Chromatogr A; 2012 Feb; 1225():174-81. PubMed ID: 22226556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional effects in the retention of colloids by thermal field-flow fractionation.
    Jeon SJ; Schimpf ME; Nyborg A
    Anal Chem; 1997 Sep; 69(17):3442-50. PubMed ID: 21639266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geometric scaling effects on instrumental plate height in field flow fractionation.
    Sant HJ; Gale BK
    J Chromatogr A; 2006 Feb; 1104(1-2):282-90. PubMed ID: 16368105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of ionic strength and background electrolyte on pH measurements in metal ion adsorption experiments.
    Wiesner AD; Katz LE; Chen CC
    J Colloid Interface Sci; 2006 Sep; 301(1):329-32. PubMed ID: 16765363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric flow field-flow fractionation of liposomes: optimization of fractionation variables.
    Hupfeld S; Ausbacher D; Brandl M
    J Sep Sci; 2009 May; 32(9):1465-70. PubMed ID: 19350580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.