BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

488 related articles for article (PubMed ID: 16615765)

  • 1. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field gradient focusing of proteins based on shaped ionically conductive acrylic polymer.
    Humble PH; Kelly RT; Woolley AT; Tolley HD; Lee ML
    Anal Chem; 2004 Oct; 76(19):5641-8. PubMed ID: 15456281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D; Besselink GA; Schlautmann S; Schasfoort RB
    Lab Chip; 2006 Mar; 6(3):374-80. PubMed ID: 16511620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance optimization in electric field gradient focusing.
    Sun X; Farnsworth PB; Tolley HD; Warnick KF; Woolley AT; Lee ML
    J Chromatogr A; 2009 Jan; 1216(1):159-64. PubMed ID: 19081099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption-resistant acrylic copolymer for prototyping of microfluidic devices for proteins and peptides.
    Liu J; Sun X; Lee ML
    Anal Chem; 2007 Mar; 79(5):1926-31. PubMed ID: 17249641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved protein separation by microchip isoelectric focusing with stepwise gradient of electric field strength.
    Cong Y; Liang Y; Zhang L; Zhang W; Zhang Y
    J Sep Sci; 2009 Feb; 32(3):462-5. PubMed ID: 19173333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programed elution and peak profiles in electric field gradient focusing.
    Lin SL; Li Y; Woolley AT; Lee ML; Tolley HD; Warnick KF
    Electrophoresis; 2008 Mar; 29(5):1058-66. PubMed ID: 18246576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(ethylene glycol)-functionalized devices for electric field gradient focusing.
    Sun X; Farnsworth PB; Woolley AT; Tolley HD; Warnick KF; Lee ML
    Anal Chem; 2008 Jan; 80(2):451-60. PubMed ID: 18081261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of Joule heating effects on temperature gradient in diverging microchannels for isoelectric focusing applications.
    Kates B; Ren CL
    Electrophoresis; 2006 May; 27(10):1967-76. PubMed ID: 16703632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical modeling of Joule heating-induced temperature gradient focusing in microfluidic channels.
    Tang G; Yang C
    Electrophoresis; 2008 Mar; 29(5):1006-12. PubMed ID: 18306182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical performance of polymer-based microfluidic devices fabricated by computer numerical controlled machining.
    Mecomber JS; Stalcup AM; Hurd D; Halsall HB; Heineman WR; Seliskar CJ; Wehmeyer KR; Limbach PA
    Anal Chem; 2006 Feb; 78(3):936-41. PubMed ID: 16448071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer solutions and entropic-based systems for double-stranded DNA capillary electrophoresis and microchip electrophoresis.
    Xu F; Baba Y
    Electrophoresis; 2004 Jul; 25(14):2332-45. PubMed ID: 15274016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array.
    Shadpour H; Hupert ML; Patterson D; Liu C; Galloway M; Stryjewski W; Goettert J; Soper SA
    Anal Chem; 2007 Feb; 79(3):870-8. PubMed ID: 17263312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J; Glawdel T; Ren CL; Pawliszyn J
    Lab Chip; 2009 Jul; 9(13):1926-32. PubMed ID: 19532968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic instability effects in microchannels with and without nanofilm coatings.
    Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH
    Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed, whole-column fluorescence imaging detection for isoelectric focusing on a microchip using an organic light emitting diode as light source.
    Yao B; Yang H; Liang Q; Luo G; Wang L; Ren K; Gao Y; Wang Y; Qiu Y
    Anal Chem; 2006 Aug; 78(16):5845-50. PubMed ID: 16906731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.