These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 16616004)

  • 1. A novel hypothesis for the binding mode of HERG channel blockers.
    Choe H; Nah KH; Lee SN; Lee HS; Lee HS; Jo SH; Leem CH; Jang YJ
    Biochem Biophys Res Commun; 2006 May; 344(1):72-8. PubMed ID: 16616004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain.
    Durdagi S; Duff HJ; Noskov SY
    J Chem Inf Model; 2011 Feb; 51(2):463-74. PubMed ID: 21241063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers.
    Aronov AM
    J Med Chem; 2006 Nov; 49(23):6917-21. PubMed ID: 17154521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of the chemical block of human ether-a-go-go-related gene (hERG) K+ current.
    Inanobe A; Kamiya N; Murakami S; Fukunishi Y; Nakamura H; Kurachi Y
    J Physiol Sci; 2008 Dec; 58(7):459-70. PubMed ID: 19032804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of structure-activity relationships for HERG channel blockers.
    Boukharta L; Keränen H; Stary-Weinzinger A; Wallin G; de Groot BL; Aqvist J
    Biochemistry; 2011 Jul; 50(27):6146-56. PubMed ID: 21657256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of HERG K+ channel by an antihistamine drug brompheniramine requires the channel binding within the S6 residue Y652 and F656.
    Park SJ; Kim KS; Kim EJ
    J Appl Toxicol; 2008 Mar; 28(2):104-11. PubMed ID: 17516459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.
    Schmidtke P; Ciantar M; Theret I; Ducrot P
    J Chem Inf Model; 2014 Aug; 54(8):2320-33. PubMed ID: 25000969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synergic modeling for the binding of fluoroquinolone antibiotics to the hERG potassium channel.
    Ryu S; Imai YN; Oiki S
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3848-51. PubMed ID: 23711922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools.
    Moorthy NS; Ramos MJ; Fernandes PA
    J Enzyme Inhib Med Chem; 2014 Jun; 29(3):317-24. PubMed ID: 23560722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel structure-based virtual screening model for the hERG channel blockers.
    Du L; Li M; You Q; Xia L
    Biochem Biophys Res Commun; 2007 Apr; 355(4):889-94. PubMed ID: 17331468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of hERG channel block by terfenadine and cisapride.
    Kamiya K; Niwa R; Morishima M; Honjo H; Sanguinetti MC
    J Pharmacol Sci; 2008 Nov; 108(3):301-7. PubMed ID: 18987434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies.
    Farid R; Day T; Friesner RA; Pearlstein RA
    Bioorg Med Chem; 2006 May; 14(9):3160-73. PubMed ID: 16413785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated docking protocol for hERG channel blockers.
    Di Martino GP; Masetti M; Ceccarini L; Cavalli A; Recanatini M
    J Chem Inf Model; 2013 Jan; 53(1):159-75. PubMed ID: 23259741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring chemical substructures essential for HERG k(+) channel blockade by synthesis and biological evaluation of dofetilide analogues.
    ; Guo D; Klaasse E; de Vries H; Brussee J; Nalos L; Rook MB; Vos MA; van der Heyden MA; Ijzerman AP
    ChemMedChem; 2009 Oct; 4(10):1722-32. PubMed ID: 19725081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular determinants of R-roscovitine block of hERG channels.
    Cernuda B; Fernandes CT; Allam SM; Orzillo M; Suppa G; Chia Chang Z; Athanasopoulos D; Buraei Z
    PLoS One; 2019; 14(9):e0217733. PubMed ID: 31479461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of van der Waals surface area properties for human ether-a-go-go-related gene blocking activity: computational study on structurally diverse compounds.
    Moorthy NS; Ramos MJ; Fernandes PA
    SAR QSAR Environ Res; 2012 Jul; 23(5-6):521-36. PubMed ID: 22452318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Papaverine, a vasodilator, blocks the pore of the HERG channel at submicromolar concentration.
    Kim YJ; Hong HK; Lee HS; Moh SH; Park JC; Jo SH; Choe H
    J Cardiovasc Pharmacol; 2008 Dec; 52(6):485-93. PubMed ID: 19034039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactions between hERG potassium channel and blockers.
    Du L; Li M; You Q
    Curr Top Med Chem; 2009; 9(4):330-8. PubMed ID: 19442204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
    Witchel HJ; Dempsey CE; Sessions RB; Perry M; Milnes JT; Hancox JC; Mitcheson JS
    Mol Pharmacol; 2004 Nov; 66(5):1201-12. PubMed ID: 15308760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side chain flexibilities in the human ether-a-go-go related gene potassium channel (hERG) together with matched-pair binding studies suggest a new binding mode for channel blockers.
    Zachariae U; Giordanetto F; Leach AG
    J Med Chem; 2009 Jul; 52(14):4266-76. PubMed ID: 19534531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.