BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 16616004)

  • 1. A novel hypothesis for the binding mode of HERG channel blockers.
    Choe H; Nah KH; Lee SN; Lee HS; Lee HS; Jo SH; Leem CH; Jang YJ
    Biochem Biophys Res Commun; 2006 May; 344(1):72-8. PubMed ID: 16616004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined receptor and ligand-based approach to the universal pharmacophore model development for studies of drug blockade to the hERG1 pore domain.
    Durdagi S; Duff HJ; Noskov SY
    J Chem Inf Model; 2011 Feb; 51(2):463-74. PubMed ID: 21241063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common pharmacophores for uncharged human ether-a-go-go-related gene (hERG) blockers.
    Aronov AM
    J Med Chem; 2006 Nov; 49(23):6917-21. PubMed ID: 17154521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico prediction of the chemical block of human ether-a-go-go-related gene (hERG) K+ current.
    Inanobe A; Kamiya N; Murakami S; Fukunishi Y; Nakamura H; Kurachi Y
    J Physiol Sci; 2008 Dec; 58(7):459-70. PubMed ID: 19032804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer simulations of structure-activity relationships for HERG channel blockers.
    Boukharta L; Keränen H; Stary-Weinzinger A; Wallin G; de Groot BL; Aqvist J
    Biochemistry; 2011 Jul; 50(27):6146-56. PubMed ID: 21657256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of HERG K+ channel by an antihistamine drug brompheniramine requires the channel binding within the S6 residue Y652 and F656.
    Park SJ; Kim KS; Kim EJ
    J Appl Toxicol; 2008 Mar; 28(2):104-11. PubMed ID: 17516459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of hERG closure allow novel insights into hERG blocking by small molecules.
    Schmidtke P; Ciantar M; Theret I; Ducrot P
    J Chem Inf Model; 2014 Aug; 54(8):2320-33. PubMed ID: 25000969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The synergic modeling for the binding of fluoroquinolone antibiotics to the hERG potassium channel.
    Ryu S; Imai YN; Oiki S
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3848-51. PubMed ID: 23711922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive QSAR models development and validation for human ether-a-go-go related gene (hERG) blockers using newer tools.
    Moorthy NS; Ramos MJ; Fernandes PA
    J Enzyme Inhib Med Chem; 2014 Jun; 29(3):317-24. PubMed ID: 23560722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel structure-based virtual screening model for the hERG channel blockers.
    Du L; Li M; You Q; Xia L
    Biochem Biophys Res Commun; 2007 Apr; 355(4):889-94. PubMed ID: 17331468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular determinants of hERG channel block by terfenadine and cisapride.
    Kamiya K; Niwa R; Morishima M; Honjo H; Sanguinetti MC
    J Pharmacol Sci; 2008 Nov; 108(3):301-7. PubMed ID: 18987434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights about HERG blockade obtained from protein modeling, potential energy mapping, and docking studies.
    Farid R; Day T; Friesner RA; Pearlstein RA
    Bioorg Med Chem; 2006 May; 14(9):3160-73. PubMed ID: 16413785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An automated docking protocol for hERG channel blockers.
    Di Martino GP; Masetti M; Ceccarini L; Cavalli A; Recanatini M
    J Chem Inf Model; 2013 Jan; 53(1):159-75. PubMed ID: 23259741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring chemical substructures essential for HERG k(+) channel blockade by synthesis and biological evaluation of dofetilide analogues.
    ; Guo D; Klaasse E; de Vries H; Brussee J; Nalos L; Rook MB; Vos MA; van der Heyden MA; Ijzerman AP
    ChemMedChem; 2009 Oct; 4(10):1722-32. PubMed ID: 19725081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular determinants of R-roscovitine block of hERG channels.
    Cernuda B; Fernandes CT; Allam SM; Orzillo M; Suppa G; Chia Chang Z; Athanasopoulos D; Buraei Z
    PLoS One; 2019; 14(9):e0217733. PubMed ID: 31479461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of van der Waals surface area properties for human ether-a-go-go-related gene blocking activity: computational study on structurally diverse compounds.
    Moorthy NS; Ramos MJ; Fernandes PA
    SAR QSAR Environ Res; 2012 Jul; 23(5-6):521-36. PubMed ID: 22452318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Papaverine, a vasodilator, blocks the pore of the HERG channel at submicromolar concentration.
    Kim YJ; Hong HK; Lee HS; Moh SH; Park JC; Jo SH; Choe H
    J Cardiovasc Pharmacol; 2008 Dec; 52(6):485-93. PubMed ID: 19034039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactions between hERG potassium channel and blockers.
    Du L; Li M; You Q
    Curr Top Med Chem; 2009; 9(4):330-8. PubMed ID: 19442204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The low-potency, voltage-dependent HERG blocker propafenone--molecular determinants and drug trapping.
    Witchel HJ; Dempsey CE; Sessions RB; Perry M; Milnes JT; Hancox JC; Mitcheson JS
    Mol Pharmacol; 2004 Nov; 66(5):1201-12. PubMed ID: 15308760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Side chain flexibilities in the human ether-a-go-go related gene potassium channel (hERG) together with matched-pair binding studies suggest a new binding mode for channel blockers.
    Zachariae U; Giordanetto F; Leach AG
    J Med Chem; 2009 Jul; 52(14):4266-76. PubMed ID: 19534531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.