These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 16616062)
21. Epigenetic changes in cancer and preneoplasia. Herman JG Cold Spring Harb Symp Quant Biol; 2005; 70():329-33. PubMed ID: 16869769 [TBL] [Abstract][Full Text] [Related]
22. Chronic lymphocytic leukemia: keeping cell death at bay. Debatin KM Cell; 2007 Jun; 129(5):853-5. PubMed ID: 17540163 [TBL] [Abstract][Full Text] [Related]
23. Emerging role of epigenetics in the actions of alcohol. Shukla SD; Velazquez J; French SW; Lu SC; Ticku MK; Zakhari S Alcohol Clin Exp Res; 2008 Sep; 32(9):1525-34. PubMed ID: 18616668 [TBL] [Abstract][Full Text] [Related]
24. A new paradigm in toxicology and teratology: altering gene activity in the absence of DNA sequence variation. Reamon-Buettner SM; Borlak J Reprod Toxicol; 2007 Jul; 24(1):20-30. PubMed ID: 17596910 [TBL] [Abstract][Full Text] [Related]
25. Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Herceg Z Mutagenesis; 2007 Mar; 22(2):91-103. PubMed ID: 17284773 [TBL] [Abstract][Full Text] [Related]
26. Hypermethylation of the p15INK4B gene promoter in B-chronic lymphocytic leukemia. Papageorgiou SG; Lambropoulos S; Pappa V; Economopoulou C; Kontsioti F; Papageorgiou E; Tsirigotis P; Dervenoulas J; Economopoulos T Am J Hematol; 2007 Sep; 82(9):824-5. PubMed ID: 17546638 [TBL] [Abstract][Full Text] [Related]
27. Epigenetics and aging: the targets and the marks. Fraga MF; Esteller M Trends Genet; 2007 Aug; 23(8):413-8. PubMed ID: 17559965 [TBL] [Abstract][Full Text] [Related]
28. Retinoic acid receptor beta2 is epigenetically silenced either by DNA methylation or repressive histone modifications at the promoter in cervical cancer cells. Zhang Z; Joh K; Yatsuki H; Zhao W; Soejima H; Higashimoto K; Noguchi M; Yokoyama M; Iwasaka T; Mukai T Cancer Lett; 2007 Mar; 247(2):318-27. PubMed ID: 16806674 [TBL] [Abstract][Full Text] [Related]
29. Advances in epigenetic alterations of chronic lymphocytic leukemia: from pathogenesis to treatment. Zhang X; Wang H; Zhang Y; Wang X Clin Exp Med; 2024 Mar; 24(1):54. PubMed ID: 38492089 [TBL] [Abstract][Full Text] [Related]
31. Epigenetic alterations and cancer: new targets for therapy. Allen A IDrugs; 2007 Oct; 10(10):709-12. PubMed ID: 17899489 [TBL] [Abstract][Full Text] [Related]
32. Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Abbosh PH; Montgomery JS; Starkey JA; Novotny M; Zuhowski EG; Egorin MJ; Moseman AP; Golas A; Brannon KM; Balch C; Huang TH; Nephew KP Cancer Res; 2006 Jun; 66(11):5582-91. PubMed ID: 16740693 [TBL] [Abstract][Full Text] [Related]
33. Unraveling the epigenetic code of cancer for therapy. Smith LT; Otterson GA; Plass C Trends Genet; 2007 Sep; 23(9):449-56. PubMed ID: 17681396 [TBL] [Abstract][Full Text] [Related]
34. The next innovation cycle in toxicogenomics: environmental epigenetics. Reamon-Buettner SM; Mutschler V; Borlak J Mutat Res; 2008; 659(1-2):158-65. PubMed ID: 18342568 [TBL] [Abstract][Full Text] [Related]
36. Epigenetic drivers and genetic passengers on the road to cancer. Sawan C; Vaissière T; Murr R; Herceg Z Mutat Res; 2008 Jul; 642(1-2):1-13. PubMed ID: 18471836 [TBL] [Abstract][Full Text] [Related]
37. Uncovering the DNA methylome in chronic lymphocytic leukemia. Cahill N; Rosenquist R Epigenetics; 2013 Feb; 8(2):138-48. PubMed ID: 23321535 [TBL] [Abstract][Full Text] [Related]
38. Genomics of chronic lymphocytic leukemia microRNAs as new players with clinical significance. Calin GA; Croce CM Semin Oncol; 2006 Apr; 33(2):167-73. PubMed ID: 16616063 [TBL] [Abstract][Full Text] [Related]
39. Genetic and epigenetic basis of chronic lymphocytic leukemia. Martín-Subero JI; López-Otín C; Campo E Curr Opin Hematol; 2013 Jul; 20(4):362-8. PubMed ID: 23719185 [TBL] [Abstract][Full Text] [Related]