These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 16616579)

  • 21. Temperature-dependent growth of Botrytis cinerea isolates from potted plants.
    Martínez JA; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2009; 74(3):729-38. PubMed ID: 20222557
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sclerotinia sclerotiorum: when "to be or not to be" a pathogen?
    Hegedus DD; Rimmer SR
    FEMS Microbiol Lett; 2005 Oct; 251(2):177-84. PubMed ID: 16112822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen.
    Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT
    J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic and cellular mechanisms regulating plant responses to necrotrophic pathogens.
    Lai Z; Mengiste T
    Curr Opin Plant Biol; 2013 Aug; 16(4):505-12. PubMed ID: 23859758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Geography, plants, and growing systems shape the genetic structure of Tunisian Botrytis cinerea populations.
    Karchani-Balma S; Gautier A; Raies A; Fournier E
    Phytopathology; 2008 Dec; 98(12):1271-9. PubMed ID: 19000001
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antifungal activity and biotransformation of diisophorone by Botrytis cinerea.
    Daoubi M; Deligeorgopoulou A; Macías-Sánchez AJ; Hernández-Galán R; Hitchcock PB; Hanson JR; Collado IG
    J Agric Food Chem; 2005 Jul; 53(15):6035-9. PubMed ID: 16028992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RLM3, a TIR domain encoding gene involved in broad-range immunity of Arabidopsis to necrotrophic fungal pathogens.
    Staal J; Kaliff M; Dewaele E; Persson M; Dixelius C
    Plant J; 2008 Jul; 55(2):188-200. PubMed ID: 18397376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypovirulence: mycoviruses at the fungal-plant interface.
    Nuss DL
    Nat Rev Microbiol; 2005 Aug; 3(8):632-42. PubMed ID: 16064055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of quiescent infections by postharvest pathogens during transition from the biotrophic to the necrotrophic stage.
    Prusky D; Lichter A
    FEMS Microbiol Lett; 2007 Mar; 268(1):1-8. PubMed ID: 17227463
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An important role of a BAHD acyl transferase-like protein in plant innate immunity.
    Zheng Z; Qualley A; Fan B; Dudareva N; Chen Z
    Plant J; 2009 Mar; 57(6):1040-53. PubMed ID: 19036031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Separate and combined disruptions of two exo-beta-1,3-glucanase genes decrease the efficiency of Pichia anomala (strain K) biocontrol against Botrytis cinerea on apple.
    Friel D; Pessoa NM; Vandenbol M; Jijakli MH
    Mol Plant Microbe Interact; 2007 Apr; 20(4):371-9. PubMed ID: 17427807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea.
    Petrasch S; Knapp SJ; van Kan JAL; Blanco-Ulate B
    Mol Plant Pathol; 2019 Jun; 20(6):877-892. PubMed ID: 30945788
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling mycorrhiza-induced resistance.
    Pozo MJ; Azcón-Aguilar C
    Curr Opin Plant Biol; 2007 Aug; 10(4):393-8. PubMed ID: 17658291
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ development and application of cDNA-AFLP to isolate genes of Candida oleophila (strain O) potentially involved in antagonistic properties against Botrytis cinerea.
    Massart S; Luna-Guarda M; Jijakli MH
    Commun Agric Appl Biol Sci; 2004; 69(4):595-9. PubMed ID: 15756845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Flexible microarray construction and fast DNA hybridization conducted on a microfluidic chip for greenhouse plant fungal pathogen detection.
    Wang L; Li PC
    J Agric Food Chem; 2007 Dec; 55(26):10509-16. PubMed ID: 18047274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens.
    Mzid R; Marchive C; Blancard D; Deluc L; Barrieu F; Corio-Costet MF; Drira N; Hamdi S; Lauvergeat V
    Physiol Plant; 2007 Nov; 131(3):434-47. PubMed ID: 18251882
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevated genetic variation within virulence-associated Botrytis cinerea polygalacturonase loci.
    Rowe HC; Kliebenstein DJ
    Mol Plant Microbe Interact; 2007 Sep; 20(9):1126-37. PubMed ID: 17849715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis.
    Thatcher LF; Manners JM; Kazan K
    Plant J; 2009 Jun; 58(6):927-39. PubMed ID: 19220788
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nutrition acquisition strategies during fungal infection of plants.
    Divon HH; Fluhr R
    FEMS Microbiol Lett; 2007 Jan; 266(1):65-74. PubMed ID: 17083369
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Plant pathogenic bacterial type III effectors subdue host responses.
    Zhou JM; Chai J
    Curr Opin Microbiol; 2008 Apr; 11(2):179-85. PubMed ID: 18372208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.