BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 166167)

  • 1. The relationship of adenosine triphosphatase activity to tension and power output of insect flight muscle.
    Pybus J; Tregear RT
    J Physiol; 1975 May; 247(1):71-89. PubMed ID: 166167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation between mechanical performance and the cost of isometric tension maintenance in Lethocerus flight muscle.
    Loxdale HD; Tregear RT
    J Muscle Res Cell Motil; 1985 Apr; 6(2):163-75. PubMed ID: 4031048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Power output by an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2000 Sep; 203(Pt 17):2667-89. PubMed ID: 10934007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chemo-mechanical coupling relation in the oscillatory contraction-relaxation cycles of insect fibrillar muscle.
    Chaplain RA; Frommelt B; Honka B
    J Mechanochem Cell Motil; 1976; 3(4):253-64. PubMed ID: 140202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle.
    Abbott RH
    J Physiol; 1973 Jun; 231(2):195-208. PubMed ID: 4720933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between passive tension and strong and weak binding cross-bridges in insect indirect flight muscle. A functional dissection by gelsolin-mediated thin filament removal.
    Granzier HL; Wang K
    J Gen Physiol; 1993 Feb; 101(2):235-70. PubMed ID: 7681097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the ATPase activity of insect fibrillar flight muscle during sinusoidal length oscillation probed by phosphate-water oxygen exchange.
    Lund J; Webb MR; White DC
    J Biol Chem; 1988 Apr; 263(12):5505-11. PubMed ID: 2965703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the chemomechanical energy transformation reversible?
    Ulbrich M; Rüegg JC
    Pflugers Arch; 1976 Jun; 363(3):219-22. PubMed ID: 986608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rigor contraction and the effect of various phosphate compounds on glycerinated insect flight and vertebrate muscle.
    White DC
    J Physiol; 1970 Jul; 208(3):583-605. PubMed ID: 5499786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence from insect fibrillar muscle about the elementary contractile process.
    Pringle JW
    J Gen Physiol; 1967 Jul; 50(6):Suppl:139-56. PubMed ID: 4228625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of magnesium adenosine triphosphate in the contractile kinetics of insect fibrillar flight muscle.
    Wilson MG; White DC
    J Muscle Res Cell Motil; 1983 Jun; 4(3):283-306. PubMed ID: 6603471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acceleration of the ATPase activity of glycerol-treated muscle fibers by repeated stretch-release cycles.
    Arata T; Mukohata Y; Tonomura Y
    J Biochem; 1978 Oct; 84(4):751-61. PubMed ID: 152310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical transients initiated by photolysis of caged ATP within fibers of insect fibrillar flight muscle.
    Yamakawa M; Goldman YE
    J Gen Physiol; 1991 Oct; 98(4):657-79. PubMed ID: 1960528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature and amplitude dependence of tension transients in glycerinated skeletal and insect fibrillar muscle.
    Abbott RH; Steiger GJ
    J Physiol; 1977 Mar; 266(1):13-42. PubMed ID: 856995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical interpretation of tension transients produced by a four-state mechanical model.
    Steiger JG; Abbott RH
    J Muscle Res Cell Motil; 1981 Sep; 2(3):245-60. PubMed ID: 6457057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Work production and work absorption in muscle strips from vertebrate cardiac and insect flight muscle fibers.
    Maughan D; Moore J; Vigoreaux J; Barnes B; Mulieri LA
    Adv Exp Med Biol; 1998; 453():471-80. PubMed ID: 9889859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-state model for oscillation in muscle: sinusoidal analysis.
    Murase M; Tanaka H; Nishiyama K; Shimizu H
    J Muscle Res Cell Motil; 1986 Feb; 7(1):2-10. PubMed ID: 3958157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and tension-dependent changes in the actin filament structure of insect fibrillar muscle.
    Chaplain RA; Sacharjan S
    FEBS Lett; 1974 May; 42(1):50-3. PubMed ID: 4277386
    [No Abstract]   [Full Text] [Related]  

  • 20. A troponin switch that regulates muscle contraction by stretch instead of calcium.
    Agianian B; Krzic U; Qiu F; Linke WA; Leonard K; Bullard B
    EMBO J; 2004 Feb; 23(4):772-9. PubMed ID: 14765112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.