These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 166167)

  • 41. Dependence of energy transduction in intact skeletal muscles on the time in tension.
    Kawai M; Brandt P; Orentlicher M
    Biophys J; 1977 May; 18(2):161-72. PubMed ID: 140712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle.
    Thorson J; White DC
    Biophys J; 1969 Mar; 9(3):360-90. PubMed ID: 5780714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Energetic aspects of skeletal muscle contraction: implications of fiber types.
    Rall JA
    Exerc Sport Sci Rev; 1985; 13():33-74. PubMed ID: 3159582
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal stress and Ca-independent contractile activation in mammalian skeletal muscle fibers at high temperatures.
    Ranatunga KW
    Biophys J; 1994 May; 66(5):1531-41. PubMed ID: 8061202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A spatially explicit model of muscle contraction explains a relationship between activation phase, power and ATP utilization in insect flight.
    Tanner BC; Regnier M; Daniel TL
    J Exp Biol; 2008 Jan; 211(Pt 2):180-6. PubMed ID: 18165245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature- and Mg-ATP-dependent regulation of Ca2+ sensitivity of smooth muscle actomyosin ATPase.
    Bose R; Hinton A; King GM
    Am J Physiol; 1979 Nov; 237(5):C213-20. PubMed ID: 158984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors affecting the transient tension change after applying stepwise length change to glycerol-treated muscle fibers. Effects of temperature, divalent cations, and modification with p-chloromercuribenzoate.
    Arata T; Tonomura Y
    J Biochem; 1979 Aug; 86(2):543-51. PubMed ID: 479141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Indication for an allosteric effect of ADP on actomyosin gels and glycerinated fibres from insect fibrillar flight muscle.
    Chaplain RA; Abbott RH; White DC
    Biochem Biophys Res Commun; 1965 Oct; 21(2):89-93. PubMed ID: 4222087
    [No Abstract]   [Full Text] [Related]  

  • 51. The efficiency of an asynchronous flight muscle from a beetle.
    Josephson RK; Malamud JG; Stokes DR
    J Exp Biol; 2001 Dec; 204(Pt 23):4125-39. PubMed ID: 11809787
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The scaling of myofibrillar actomyosin ATPase activity in apid bee flight muscle in relation to hovering flight energetics.
    Askew GN; Tregear RT; Ellington CP
    J Exp Biol; 2010 Apr; 213(Pt 7):1195-206. PubMed ID: 20228356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Activation by ADP and the correlation between tension and ATPase activity in insect fibrillar muscle.
    Abbott RH; Mannherz GH
    Pflugers Arch; 1970; 321(3):223-32. PubMed ID: 4249508
    [No Abstract]   [Full Text] [Related]  

  • 54. Heat, mechanics, and myosin ATPase in normal and hypertrophied heart muscle.
    Alpert NR; Mulieri LA
    Fed Proc; 1982 Feb; 41(2):192-8. PubMed ID: 6460650
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory of asynchronous oscillations in loaded insect flight muscle.
    Sicilia S; Smith DA
    Math Biosci; 1991 Oct; 106(2):159-201. PubMed ID: 1806101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The elementary steps of the actomyosin ATPase in muscle fibres studied with caged-ATP.
    Ferenczi MA; Spencer CI
    Adv Exp Med Biol; 1988; 226():181-8. PubMed ID: 2970206
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.
    Granzier HL; Wang K
    Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Possible cooperativity in crossbridge detachment in muscle fibers having magnesium pyrophosphate at the active site.
    Anderson ML; Schoenberg M
    Biophys J; 1987 Dec; 52(6):1077-82. PubMed ID: 2827801
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cardiac heat production.
    Gibbs CL; Chapman JB
    Annu Rev Physiol; 1979; 41():507-19. PubMed ID: 219764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.