BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16616818)

  • 1. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux.
    Dabholkar RD; Sawant RM; Mongayt DA; Devarajan PV; Torchilin VP
    Int J Pharm; 2006 Jun; 315(1-2):148-57. PubMed ID: 16616818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-circulating PEG-PE micelles co-loaded with paclitaxel and elacridar (GG918) overcome multidrug resistance.
    Sarisozen C; Vural I; Levchenko T; Hincal AA; Torchilin VP
    Drug Deliv; 2012 Nov; 19(8):363-70. PubMed ID: 23030458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery.
    Soga O; van Nostrum CF; Fens M; Rijcken CJ; Schiffelers RM; Storm G; Hennink WE
    J Control Release; 2005 Mar; 103(2):341-53. PubMed ID: 15763618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration.
    Sezgin Z; Yuksel N; Baykara T
    Int J Pharm; 2007 Mar; 332(1-2):161-7. PubMed ID: 17055200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG).
    Chandran T; Katragadda U; Teng Q; Tan C
    Int J Pharm; 2010 Jun; 392(1-2):170-7. PubMed ID: 20363305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PEG-PE-based micelles co-loaded with paclitaxel and cyclosporine A or loaded with paclitaxel and targeted by anticancer antibody overcome drug resistance in cancer cells.
    Sarisozen C; Vural I; Levchenko T; Hincal AA; Torchilin VP
    Drug Deliv; 2012 May; 19(4):169-76. PubMed ID: 22506922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles.
    Mo R; Jin X; Li N; Ju C; Sun M; Zhang C; Ping Q
    Biomaterials; 2011 Jul; 32(20):4609-20. PubMed ID: 21440934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles.
    Letchford K; Liggins R; Wasan KM; Burt H
    Eur J Pharm Biopharm; 2009 Feb; 71(2):196-206. PubMed ID: 18762253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed micelles made of poly(ethylene glycol)-phosphatidylethanolamine conjugate and d-alpha-tocopheryl polyethylene glycol 1000 succinate as pharmaceutical nanocarriers for camptothecin.
    Mu L; Elbayoumi TA; Torchilin VP
    Int J Pharm; 2005 Dec; 306(1-2):142-9. PubMed ID: 16242875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P-glycoprotein efflux inhibition by amphiphilic diblock copolymers: relationship between copolymer concentration and substrate hydrophobicity.
    Zastre JA; Jackson JK; Wong W; Burt HM
    Mol Pharm; 2008; 5(4):643-53. PubMed ID: 18380467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymeric micelles: polyethylene glycol-phosphatidylethanolamine (PEG-PE)-based micelles as an example.
    Sawant RR; Torchilin VP
    Methods Mol Biol; 2010; 624():131-49. PubMed ID: 20217593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folate-functionalized polymeric micelles for tumor targeted delivery of a potent multidrug-resistance modulator FG020326.
    Yang X; Deng W; Fu L; Blanco E; Gao J; Quan D; Shuai X
    J Biomed Mater Res A; 2008 Jul; 86(1):48-60. PubMed ID: 17941015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-Sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles.
    Chen W; Meng F; Cheng R; Zhong Z
    J Control Release; 2010 Feb; 142(1):40-6. PubMed ID: 19804803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel polymer-paclitaxel conjugate based on amphiphilic triblock copolymer.
    Xie Z; Guan H; Chen X; Lu C; Chen L; Hu X; Shi Q; Jing X
    J Control Release; 2007 Feb; 117(2):210-6. PubMed ID: 17188776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEG conjugated N-octyl-O-sulfate chitosan micelles for delivery of paclitaxel: in vitro characterization and in vivo evaluation.
    Qu G; Yao Z; Zhang C; Wu X; Ping Q
    Eur J Pharm Sci; 2009 May; 37(2):98-105. PubMed ID: 19429416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate-mixed polymeric phospholipid micelles of berberine as an anticancer nanopharmaceutical.
    Shen R; Kim JJ; Yao M; Elbayoumi TA
    Int J Nanomedicine; 2016; 11():1687-700. PubMed ID: 27217747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction-sensitive reversibly crosslinked biodegradable micelles for triggered release of doxorubicin.
    Xu Y; Meng F; Cheng R; Zhong Z
    Macromol Biosci; 2009 Dec; 9(12):1254-61. PubMed ID: 19904724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids.
    Wang J; Mongayt D; Torchilin VP
    J Drug Target; 2005 Jan; 13(1):73-80. PubMed ID: 15848957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrotropic agents for study of in vitro paclitaxel release from polymeric micelles.
    Cho YW; Lee J; Lee SC; Huh KM; Park K
    J Control Release; 2004 Jun; 97(2):249-57. PubMed ID: 15196752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.