These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16616888)
21. Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine. Riedl S; Rinner B; Schaider H; Lohner K; Zweytick D Biometals; 2014 Oct; 27(5):981-97. PubMed ID: 24838743 [TBL] [Abstract][Full Text] [Related]
22. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain. Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844 [TBL] [Abstract][Full Text] [Related]
23. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin. Haney EF; Nazmi K; Bolscher JG; Vogel HJ Biochem Cell Biol; 2012 Jun; 90(3):362-77. PubMed ID: 22250712 [TBL] [Abstract][Full Text] [Related]
24. Interactions of the antimicrobial peptide Ac-FRWWHR-NH(2) with model membrane systems and bacterial cells. Rezansoff AJ; Hunter HN; Jing W; Park IY; Kim SC; Vogel HJ J Pept Res; 2005 May; 65(5):491-501. PubMed ID: 15853943 [TBL] [Abstract][Full Text] [Related]
25. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a. Joshi S; Bisht GS; Rawat DS; Maiti S; Pasha S FEBS J; 2012 Oct; 279(20):3776-90. PubMed ID: 22883393 [TBL] [Abstract][Full Text] [Related]
26. Membrane association and selectivity of the antimicrobial peptide NK-2: a molecular dynamics simulation study. Pimthon J; Willumeit R; Lendlein A; Hofmann D J Pept Sci; 2009 Oct; 15(10):654-67. PubMed ID: 19691017 [TBL] [Abstract][Full Text] [Related]
27. Membrane curvature stress and antibacterial activity of lactoferricin derivatives. Zweytick D; Tumer S; Blondelle SE; Lohner K Biochem Biophys Res Commun; 2008 May; 369(2):395-400. PubMed ID: 18282464 [TBL] [Abstract][Full Text] [Related]
28. Acylation of SC4 dodecapeptide increases bactericidal potency against Gram-positive bacteria, including drug-resistant strains. Lockwood NA; Haseman JR; Tirrell MV; Mayo KH Biochem J; 2004 Feb; 378(Pt 1):93-103. PubMed ID: 14609430 [TBL] [Abstract][Full Text] [Related]
29. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Kim HK; Chun DS; Kim JS; Yun CH; Lee JH; Hong SK; Kang DK Appl Microbiol Biotechnol; 2006 Sep; 72(2):330-8. PubMed ID: 16421719 [TBL] [Abstract][Full Text] [Related]
30. Design of human lactoferricin derived antitumor peptides-activity and specificity against malignant melanoma in 2D and 3D model studies. Grissenberger S; Riedl S; Rinner B; Leber R; Zweytick D Biochim Biophys Acta Biomembr; 2020 Aug; 1862(8):183264. PubMed ID: 32151609 [TBL] [Abstract][Full Text] [Related]
31. Solution structures and model membrane interactions of Ctriporin, an anti-methicillin-resistant Staphylococcus aureus Peptide from Scorpion Venom. Bandyopadhyay S; Junjie RL; Lim B; Sanjeev R; Xin WY; Yee CK; Hui Melodies SM; Yow N; Sivaraman J; Chatterjee C Biopolymers; 2014 Dec; 101(12):1143-53. PubMed ID: 24947608 [TBL] [Abstract][Full Text] [Related]
32. Interactions of the Australian tree frog antimicrobial peptides aurein 1.2, citropin 1.1 and maculatin 1.1 with lipid model membranes: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Seto GW; Marwaha S; Kobewka DM; Lewis RN; Separovic F; McElhaney RN Biochim Biophys Acta; 2007 Nov; 1768(11):2787-800. PubMed ID: 17825246 [TBL] [Abstract][Full Text] [Related]
33. Biological activity and structural aspects of PGLa interaction with membrane mimetic systems. Lohner K; Prossnigg F Biochim Biophys Acta; 2009 Aug; 1788(8):1656-66. PubMed ID: 19481533 [TBL] [Abstract][Full Text] [Related]
34. Secondary structure and location of a magainin analogue in synthetic phospholipid bilayers. Hirsh DJ; Hammer J; Maloy WL; Blazyk J; Schaefer J Biochemistry; 1996 Oct; 35(39):12733-41. PubMed ID: 8841117 [TBL] [Abstract][Full Text] [Related]
35. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments. Di Natale G; Pappalardo G; Milardi D; Sciacca MF; Attanasio F; La Mendola D; Rizzarelli E J Phys Chem B; 2010 Nov; 114(43):13830-8. PubMed ID: 20936829 [TBL] [Abstract][Full Text] [Related]
36. Structural and biophysical characterization of an antimicrobial peptide chimera comprised of lactoferricin and lactoferrampin. Haney EF; Nazmi K; Bolscher JG; Vogel HJ Biochim Biophys Acta; 2012 Mar; 1818(3):762-75. PubMed ID: 22155682 [TBL] [Abstract][Full Text] [Related]
37. Bilayer disruption and liposome restructuring by a homologous series of small Arg-rich synthetic peptides. Ye G; Gupta A; DeLuca R; Parang K; Bothun GD Colloids Surf B Biointerfaces; 2010 Mar; 76(1):76-81. PubMed ID: 19913394 [TBL] [Abstract][Full Text] [Related]
38. The efficacy of trivalent cyclic hexapeptides to induce lipid clustering in PG/PE membranes correlates with their antimicrobial activity. Finger S; Kerth A; Dathe M; Blume A Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2998-3006. PubMed ID: 26367060 [TBL] [Abstract][Full Text] [Related]
39. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides. Liu Y; Han F; Xie Y; Wang Y Biometals; 2011 Dec; 24(6):1069-78. PubMed ID: 21607695 [TBL] [Abstract][Full Text] [Related]
40. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. Farnaud S; Spiller C; Moriarty LC; Patel A; Gant V; Odell EW; Evans RW FEMS Microbiol Lett; 2004 Apr; 233(2):193-9. PubMed ID: 15063486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]