These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16616888)
41. The effects of shortening lactoferrin derived peptides against tumour cells, bacteria and normal human cells. Yang N; Strøm MB; Mekonnen SM; Svendsen JS; Rekdal O J Pept Sci; 2004 Jan; 10(1):37-46. PubMed ID: 14959890 [TBL] [Abstract][Full Text] [Related]
42. Study of the interaction of lactoferricin B with phospholipid monolayers and bilayers. Arseneault M; Bédard S; Boulet-Audet M; Pézolet M Langmuir; 2010 Mar; 26(5):3468-78. PubMed ID: 20112931 [TBL] [Abstract][Full Text] [Related]
43. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Song YM; Park Y; Lim SS; Yang ST; Woo ER; Park IS; Lee JS; Kim JI; Hahm KS; Kim Y; Shin SY Biochemistry; 2005 Sep; 44(36):12094-106. PubMed ID: 16142907 [TBL] [Abstract][Full Text] [Related]
44. Production of lactoferricin and other cationic peptides from food grade bovine lactoferrin with various iron saturation levels. Chan JC; Li-Chan EC J Agric Food Chem; 2007 Jan; 55(2):493-501. PubMed ID: 17227084 [TBL] [Abstract][Full Text] [Related]
45. Interaction of prenylated chalcones and flavanones from common hop with phosphatidylcholine model membranes. Wesołowska O; Gąsiorowska J; Petrus J; Czarnik-Matusewicz B; Michalak K Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):173-84. PubMed ID: 24060562 [TBL] [Abstract][Full Text] [Related]
49. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
50. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes: Complex interplay of electrostatic and hydrophobic interactions. Hoernke M; Schwieger C; Kerth A; Blume A Biochim Biophys Acta; 2012 Jul; 1818(7):1663-72. PubMed ID: 22433675 [TBL] [Abstract][Full Text] [Related]
51. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related]
52. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
53. N-Terminal fatty acylation of peptides spanning the cationic C-terminal segment of bovine β-defensin-2 results in salt-resistant antibacterial activity. Krishnakumari V; Nagaraj R Biophys Chem; 2015 Apr; 199():25-33. PubMed ID: 25791057 [TBL] [Abstract][Full Text] [Related]
54. Different membrane behaviour and cellular uptake of three basic arginine-rich peptides. Walrant A; Correia I; Jiao CY; Lequin O; Bent EH; Goasdoué N; Lacombe C; Chassaing G; Sagan S; Alves ID Biochim Biophys Acta; 2011 Jan; 1808(1):382-93. PubMed ID: 20920465 [TBL] [Abstract][Full Text] [Related]
55. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation. Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194 [TBL] [Abstract][Full Text] [Related]
56. Bridging the Antimicrobial Activity of Two Lactoferricin Derivatives in Marx L; Semeraro EF; Mandl J; Kremser J; Frewein MP; Malanovic N; Lohner K; Pabst G Front Med Technol; 2021; 3():625975. PubMed ID: 35047906 [TBL] [Abstract][Full Text] [Related]
57. Novel lactoferrampin antimicrobial peptides derived from human lactoferrin. Haney EF; Nazmi K; Lau F; Bolscher JG; Vogel HJ Biochimie; 2009 Jan; 91(1):141-54. PubMed ID: 18534196 [TBL] [Abstract][Full Text] [Related]
58. Antimicrobial activity and membrane selective interactions of a synthetic lipopeptide MSI-843. Thennarasu S; Lee DK; Tan A; Prasad Kari U; Ramamoorthy A Biochim Biophys Acta; 2005 Jun; 1711(1):49-58. PubMed ID: 15904663 [TBL] [Abstract][Full Text] [Related]
59. The Mechanism by Which Luteolin Disrupts the Cytoplasmic Membrane of Methicillin-Resistant Staphylococcus aureus. Zhang T; Qiu Y; Luo Q; Zhao L; Yan X; Ding Q; Jiang H; Yang H J Phys Chem B; 2018 Feb; 122(4):1427-1438. PubMed ID: 29309144 [TBL] [Abstract][Full Text] [Related]
60. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]