These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 16616957)
1. Reduction of 2,4-dichlorophenol toxicity to Pseudomonas putida after oxidative incubation with humic substances and a biomimetic catalyst. Hahn D; Cozzolino A; Piccolo A; Armenante PM Ecotoxicol Environ Saf; 2007 Mar; 66(3):335-42. PubMed ID: 16616957 [TBL] [Abstract][Full Text] [Related]
2. Increased conformational rigidity of humic substances by oxidative biomimetic catalysis. Piccolo A; Conte P; Tagliatesta P Biomacromolecules; 2005; 6(1):351-8. PubMed ID: 15638539 [TBL] [Abstract][Full Text] [Related]
3. Enhanced molecular dimension of a humic acid induced by photooxidation catalyzed by biomimetic metalporphyrins. Smejkalová D; Piccolo A Biomacromolecules; 2005; 6(4):2120-5. PubMed ID: 16004453 [TBL] [Abstract][Full Text] [Related]
4. Copolymerization of 2,4-dichlorophenol with humic substances by oxidative and photo-oxidative biomimetic catalysis. Fontaine B; Drosos M; Mazzei P Environ Sci Pollut Res Int; 2014; 21(13):8016-24. PubMed ID: 24659436 [TBL] [Abstract][Full Text] [Related]
5. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid. Zhang Z; Cissoko N; Wo J; Xu X J Hazard Mater; 2009 Jun; 165(1-3):78-86. PubMed ID: 19008044 [TBL] [Abstract][Full Text] [Related]
6. Wet peroxide oxidation of chlorophenols. García-Molina V; López-Arias M; Florczyk M; Chamarro E; Esplugas S Water Res; 2005 Mar; 39(5):795-802. PubMed ID: 15743624 [TBL] [Abstract][Full Text] [Related]
7. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate). Brausam A; Eigler S; Jux N; van Eldik R Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585 [TBL] [Abstract][Full Text] [Related]
8. Remediation of highly contaminated soils from an industrial site by employing a combined treatment with exogeneous humic substances and oxidative biomimetic catalysis. Sannino F; Spaccini R; Savy D; Piccolo A J Hazard Mater; 2013 Oct; 261():55-62. PubMed ID: 23911828 [TBL] [Abstract][Full Text] [Related]
9. Oxidation of 2,4-dichlorophenol and 3,4-dichlorophenol by means of Fe(III)-homogeneous photocatalysis and algal toxicity assessment of the treated solutions. Andreozzi R; Di Somma I; Marotta R; Pinto G; Pollio A; Spasiano D Water Res; 2011 Feb; 45(5):2038-48. PubMed ID: 21251692 [TBL] [Abstract][Full Text] [Related]
10. Effects of humic substances on the decomposition of 2,4-dichlorophenol by ozone after extraction from water into acetic acid through activated carbon. Okawa K; Nakano Y; Nishijima W; Okada M Chemosphere; 2004 Dec; 57(9):1231-5. PubMed ID: 15504485 [TBL] [Abstract][Full Text] [Related]
11. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Zhang Z; Shen Q; Cissoko N; Wo J; Xu X J Hazard Mater; 2010 Oct; 182(1-3):252-8. PubMed ID: 20619538 [TBL] [Abstract][Full Text] [Related]
12. Oxidative and photoxidative polymerization of humic suprastructures by heterogeneous biomimetic catalysis. Nuzzo A; Piccolo A Biomacromolecules; 2013 May; 14(5):1645-52. PubMed ID: 23514279 [TBL] [Abstract][Full Text] [Related]
13. Rates of oxidative coupling of humic phenolic monomers catalyzed by a biomimetic iron-porphyrin. Smejkalová D; Piccolo A Environ Sci Technol; 2006 Mar; 40(5):1644-9. PubMed ID: 16568782 [TBL] [Abstract][Full Text] [Related]
14. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356 [TBL] [Abstract][Full Text] [Related]
15. Oxidative degradation of 2,4,6-trichlorophenol and pentachlorophenol in contaminated soil suspensions using a supramolecular catalyst of 5,10,15,20-tetrakis (p-hydroxyphenyl)porphine-iron(III) bound to humic acid via formaldehyde polycondensation. Fukushima M; Shigematsu S; Nagao S J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Sep; 44(11):1088-97. PubMed ID: 19847698 [TBL] [Abstract][Full Text] [Related]
16. Role of humic acid fraction with higher aromaticity in enhancing the activity of a biomimetic catalyst, tetra(p-sulfonatophenyl)porphineiron(III). Fukushima M; Tanabe Y; Morimoto K; Tatsumi K Biomacromolecules; 2007 Feb; 8(2):386-91. PubMed ID: 17291061 [TBL] [Abstract][Full Text] [Related]
17. Co-polymerization of penta-halogenated phenols in humic substances by catalytic oxidation using biomimetic catalysis. Fontaine B; Piccolo A Environ Sci Pollut Res Int; 2012 Jun; 19(5):1485-93. PubMed ID: 21969186 [TBL] [Abstract][Full Text] [Related]
18. Using FeGAC/H2O2 process for landfill leachate treatment. Fan HJ; Chen IW; Lee MH; Chiu T Chemosphere; 2007 Apr; 67(8):1647-52. PubMed ID: 17257650 [TBL] [Abstract][Full Text] [Related]
19. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. Xue X; Hanna K; Deng N J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810 [TBL] [Abstract][Full Text] [Related]
20. Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis. Yin L; Shen Z; Niu J; Chen J; Duan Y Environ Sci Technol; 2010 Dec; 44(23):9117-22. PubMed ID: 21049990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]