These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 16616964)
1. The contribution of peripheral and central vision in the control of movement amplitude. Lawrence GP; Khan MA; Buckolz E; Oldham AR Hum Mov Sci; 2006 Jun; 25(3):326-38. PubMed ID: 16616964 [TBL] [Abstract][Full Text] [Related]
2. Inferring online and offline processing of visual feedback in target-directed movements from kinematic data. Khan MA; Franks IM; Elliott D; Lawrence GP; Chua R; Bernier PM; Hansen S; Weeks DJ Neurosci Biobehav Rev; 2006; 30(8):1106-21. PubMed ID: 16839604 [TBL] [Abstract][Full Text] [Related]
3. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping. Fukui T; Inui T Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178 [TBL] [Abstract][Full Text] [Related]
4. Reaching and grasping with restricted peripheral vision. González-Alvarez C; Subramanian A; Pardhan S Ophthalmic Physiol Opt; 2007 May; 27(3):265-74. PubMed ID: 17470239 [TBL] [Abstract][Full Text] [Related]
5. The utilization of visual feedback from peripheral and central vision in the control of direction. Khan MA; Lawrence GP; Franks IM; Buckolz E Exp Brain Res; 2004 Sep; 158(2):241-51. PubMed ID: 15127170 [TBL] [Abstract][Full Text] [Related]
6. The dual role of vision in sequential aiming movements. Khan MA; Sarteep S; Mottram TM; Lawrence GP; Adam JJ Acta Psychol (Amst); 2011 Mar; 136(3):425-31. PubMed ID: 21334583 [TBL] [Abstract][Full Text] [Related]
7. Determinants of offline processing of visual information for the control of reaching movements. Bernier PM; Chua R; Franks IM; Khan MA J Mot Behav; 2006 Sep; 38(5):331-8. PubMed ID: 16968678 [TBL] [Abstract][Full Text] [Related]
8. Evidence for continuous processing of visual information in a manual video-aiming task. Proteau L; Roujoula A; Messier J J Mot Behav; 2009 May; 41(3):219-31. PubMed ID: 19366655 [TBL] [Abstract][Full Text] [Related]
9. Difference in sensorimotor adaptation to horizontal and vertical mirror distortions during ballistic arm movements. Caselli P; Conforto S; Schmid M; Accornero N; D'Alessio T Hum Mov Sci; 2006 Jun; 25(3):310-25. PubMed ID: 16563539 [TBL] [Abstract][Full Text] [Related]
10. The functional role of central and peripheral vision in the control of posture. Berencsi A; Ishihara M; Imanaka K Hum Mov Sci; 2005; 24(5-6):689-709. PubMed ID: 16337294 [TBL] [Abstract][Full Text] [Related]
11. [Targets of the memorized position and visual contexts]. Priout P; Guédon O; Proteau L; Gauthier GM Can J Exp Psychol; 2002 Dec; 56(4):253-62. PubMed ID: 12491649 [TBL] [Abstract][Full Text] [Related]
12. What causes specificity of practice in a manual aiming movement: vision dominance or transformation errors? Proteau L; Carnahan H J Mot Behav; 2001 Sep; 33(3):226-34. PubMed ID: 11495827 [TBL] [Abstract][Full Text] [Related]
13. Visual and motor constraints on trajectory planning in pointing movements. Palluel-Germain R; Boy F; Orliaguet JP; Coello Y Neurosci Lett; 2004 Dec; 372(3):235-9. PubMed ID: 15542247 [TBL] [Abstract][Full Text] [Related]
14. Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Kasten E; Bunzenthal U; Sabel BA Behav Brain Res; 2006 Nov; 175(1):18-26. PubMed ID: 16970999 [TBL] [Abstract][Full Text] [Related]
15. Online versus offline processing of visual feedback in the production of component submovements. Khan MA; Franks IM J Mot Behav; 2003 Sep; 35(3):285-95. PubMed ID: 12873843 [TBL] [Abstract][Full Text] [Related]
16. Visual regulation of manual aiming: a comparison of methods. Elliott D; Hansen S Behav Res Methods; 2010 Nov; 42(4):1087-95. PubMed ID: 21139176 [TBL] [Abstract][Full Text] [Related]
17. Vision of the hand prior to movement onset allows full motor adaptation to a multi-force environment. Bourdin C; Bringoux L; Gauthier GM; Vercher JL Brain Res Bull; 2006 Dec; 71(1-3):101-10. PubMed ID: 17113935 [TBL] [Abstract][Full Text] [Related]
18. On the role of visual afferent information for the control of aiming movements toward targets of different sizes. Proteau L; Isabelle G J Mot Behav; 2002 Dec; 34(4):367-84. PubMed ID: 12446251 [TBL] [Abstract][Full Text] [Related]
19. Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. Vesia M; Yan X; Henriques DY; Sergio LE; Crawford JD J Neurophysiol; 2008 Oct; 100(4):2005-14. PubMed ID: 18684904 [TBL] [Abstract][Full Text] [Related]
20. Can a visual representation support the online control of memory-dependent reaching? Evident from a variable spatial mapping paradigm. Heath M; Westwood DA Motor Control; 2003 Oct; 7(4):346-61. PubMed ID: 14999133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]