BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16617121)

  • 1. Methods of quantitative proteomics and their application to plant organelle characterization.
    Lilley KS; Dupree P
    J Exp Bot; 2006; 57(7):1493-9. PubMed ID: 16617121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.
    Dunkley TP; Dupree P; Watson RB; Lilley KS
    Biochem Soc Trans; 2004 Jun; 32(Pt3):520-3. PubMed ID: 15157176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant organelle proteomics.
    Lilley KS; Dupree P
    Curr Opin Plant Biol; 2007 Dec; 10(6):594-9. PubMed ID: 17913569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal 14N/15N labeling and difference gel electrophoresis.
    Hebeler R; Oeljeklaus S; Reidegeld KA; Eisenacher M; Stephan C; Sitek B; Stühler K; Meyer HE; Sturre MJ; Dijkwel PP; Warscheid B
    Mol Cell Proteomics; 2008 Jan; 7(1):108-20. PubMed ID: 17878269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of organelle discovery upon sub-cellular protein localisation.
    Breckels LM; Gatto L; Christoforou A; Groen AJ; Lilley KS; Trotter MW
    J Proteomics; 2013 Aug; 88():129-40. PubMed ID: 23523639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant organelle proteomics: collaborating for optimal cell function.
    Agrawal GK; Bourguignon J; Rolland N; Ephritikhine G; Ferro M; Jaquinod M; Alexiou KG; Chardot T; Chakraborty N; Jolivet P; Doonan JH; Rakwal R
    Mass Spectrom Rev; 2011; 30(5):772-853. PubMed ID: 21038434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis thaliana as a model organism for plant proteome research.
    Wienkoop S; Baginsky S; Weckwerth W
    J Proteomics; 2010 Oct; 73(11):2239-48. PubMed ID: 20692386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of organelle proteins by isotope tagging (LOPIT).
    Dunkley TP; Watson R; Griffin JL; Dupree P; Lilley KS
    Mol Cell Proteomics; 2004 Nov; 3(11):1128-34. PubMed ID: 15295017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment.
    Tolin S; Arrigoni G; Trentin AR; Veljovic-Jovanovic S; Pivato M; Zechman B; Masi A
    Proteomics; 2013 Jun; 13(12-13):2031-45. PubMed ID: 23661340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in Arabidopsis thaliana.
    Huttlin EL; Hegeman AD; Harms AC; Sussman MR
    Mol Cell Proteomics; 2007 May; 6(5):860-81. PubMed ID: 17293592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization.
    Rödiger A; Agne B; Baerenfaller K; Baginsky S
    Methods Mol Biol; 2014; 1072():275-88. PubMed ID: 24136529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System, trends and perspectives of proteomics in dicot plants Part II: Proteomes of the complex developmental stages.
    Agrawal GK; Yonekura M; Iwahashi Y; Iwahashi H; Rakwal R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2005 Feb; 815(1-2):125-36. PubMed ID: 15652803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of trans-golgi network proteins in Arabidopsis thaliana root tissue.
    Groen AJ; Sancho-Andrés G; Breckels LM; Gatto L; Aniento F; Lilley KS
    J Proteome Res; 2014 Feb; 13(2):763-76. PubMed ID: 24344820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple marker abundance profiling: combining selected reaction monitoring and data-dependent acquisition for rapid estimation of organelle abundance in subcellular samples.
    Hooper CM; Stevens TJ; Saukkonen A; Castleden IR; Singh P; Mann GW; Fabre B; Ito J; Deery MJ; Lilley KS; Petzold CJ; Millar AH; Heazlewood JL; Parsons HT
    Plant J; 2017 Dec; 92(6):1202-1217. PubMed ID: 29024340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF.
    Wu WW; Wang G; Baek SJ; Shen RF
    J Proteome Res; 2006 Mar; 5(3):651-8. PubMed ID: 16512681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organelle proteomics by label-free and SILAC-based protein correlation profiling.
    Dengjel J; Jakobsen L; Andersen JS
    Methods Mol Biol; 2010; 658():255-65. PubMed ID: 20839109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification by 2-D DIGE of apoplastic proteins regulated by oligogalacturonides in Arabidopsis thaliana.
    Casasoli M; Spadoni S; Lilley KS; Cervone F; De Lorenzo G; Mattei B
    Proteomics; 2008 Mar; 8(5):1042-54. PubMed ID: 18324730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Gel Electrophoresis and 2D-DIGE.
    Meleady P
    Methods Mol Biol; 2018; 1664():3-14. PubMed ID: 29019120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Arabidopsis thaliana 2-D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and post-translational modifications.
    Taylor NL; Heazlewood JL; Millar AH
    Proteomics; 2011 May; 11(9):1720-33. PubMed ID: 21472856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment and preparation of plasma membrane proteins from Arabidopsis thaliana for global proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Mitra SK; Clouse SD; Goshe MB
    Methods Mol Biol; 2009; 564():341-55. PubMed ID: 19544033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.