These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1661720)

  • 1. Cytochrome c protein synthesis rate in rat skeletal muscle.
    Booth FW
    J Appl Physiol (1985); 1991 Oct; 71(4):1225-30. PubMed ID: 1661720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Daily running for 2 wk and mRNAs for cytochrome c and alpha-actin in rat skeletal muscle.
    Morrison PR; Biggs RB; Booth FW
    Am J Physiol; 1989 Nov; 257(5 Pt 1):C936-9. PubMed ID: 2480716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise induces a transient increase in transcription of the GLUT-4 gene in skeletal muscle.
    Neufer PD; Dohm GL
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1597-603. PubMed ID: 7506491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic and genetic adaptation of soleus muscle mitochondria to physical training in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Nakai N; Sugiyama S; Ozawa T; Sokabe M; Horai S; Tokuyama K; Suzuki M
    Am J Physiol; 1994 Sep; 267(3 Pt 1):E388-95. PubMed ID: 7943219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome c mRNA and alpha-actin mRNA in muscles of rats fed beta-GPA.
    Lai MM; Booth FW
    J Appl Physiol (1985); 1990 Sep; 69(3):843-8. PubMed ID: 2174029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome c protein-synthesis rates and mRNA contents during atrophy and recovery in skeletal muscle.
    Morrison PR; Montgomery JA; Wong TS; Booth FW
    Biochem J; 1987 Jan; 241(1):257-63. PubMed ID: 3032156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of glucocorticoids and endurance training on cytochrome oxidase expression in skeletal muscle.
    Marone JR; Falduto MT; Essig DA; Hickson RC
    J Appl Physiol (1985); 1994 Oct; 77(4):1685-90. PubMed ID: 7836187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis.
    Strobel NA; Peake JM; Matsumoto A; Marsh SA; Coombes JS; Wadley GD
    Med Sci Sports Exerc; 2011 Jun; 43(6):1017-24. PubMed ID: 21085043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of exercise training and clenbuterol on GLUT-4 protein in muscle of obese Zucker rats.
    Kuo CH; Ding Z; Ivy JL
    Am J Physiol; 1996 Nov; 271(5 Pt 1):E847-54. PubMed ID: 8944671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c mRNA in skeletal muscles of immobilized limbs.
    Booth FW; Lou W; Hamilton MT; Yan Z
    J Appl Physiol (1985); 1996 Nov; 81(5):1941-5. PubMed ID: 8941513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training.
    Hickson RC
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):746-9. PubMed ID: 6276338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PGC-1alpha is not mandatory for exercise- and training-induced adaptive gene responses in mouse skeletal muscle.
    Leick L; Wojtaszewski JF; Johansen ST; Kiilerich K; Comes G; Hellsten Y; Hidalgo J; Pilegaard H
    Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E463-74. PubMed ID: 18073319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of iron deficiency and training on mitochondrial enzymes in skeletal muscle.
    Willis WT; Brooks GA; Henderson SA; Dallman PR
    J Appl Physiol (1985); 1987 Jun; 62(6):2442-6. PubMed ID: 3038829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle respiratory capacity, endurance, and glycogen utilization.
    Fitts RH; Booth FW; Winder WW; Holloszy JO
    Am J Physiol; 1975 Apr; 228(4):1029-33. PubMed ID: 165725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome oxidase in muscle of endurance-trained rats: subunit mRNA contents and heme synthesis.
    Town GP; Essig DA
    J Appl Physiol (1985); 1993 Jan; 74(1):192-6. PubMed ID: 8383107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decreased muscle ACE activity enhances functional response to endurance training in rats, without change in muscle oxidative capacity or contractile phenotype.
    Habouzit E; Richard H; Sanchez H; Koulmann N; Serrurier B; Monnet R; Ventura-Clapier R; Bigard X
    J Appl Physiol (1985); 2009 Jul; 107(1):346-53. PubMed ID: 19407247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential adaptation to endurance training between heart and gastrocnemius muscle mitochondria in rats.
    Murakami T; Shimomura Y; Fujitsuka N; Sugiyama S
    Biochem Mol Biol Int; 1995 Jun; 36(2):285-90. PubMed ID: 7663432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle fiber involvement during training of different intensities and durations.
    Terjung RL
    Am J Physiol; 1976 Apr; 230(4):946-50. PubMed ID: 178189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic parameters of cytochrome c oxidase in rat skeletal muscle: effect of endurance training.
    Soussi B; Idström JP; Schersten T; Bylund-Fellenius AC
    Acta Physiol Scand; 1989 Mar; 135(3):373-9. PubMed ID: 2538997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of nuclear respiratory factor-1 expression by an acute bout of exercise in rat muscle.
    Murakami T; Shimomura Y; Yoshimura A; Sokabe M; Fujitsuka N
    Biochim Biophys Acta; 1998 Jun; 1381(1):113-22. PubMed ID: 9659378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.