These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 1661740)
1. Circadian rhythmicity in the activities of adenylate cyclase and phosphodiesterase in synchronously dividing and stationary-phase cultures of the achlorophyllous ZC mutant of Euglena gracilis. Tong J; Carre IA; Edmunds LN J Cell Sci; 1991 Oct; 100 ( Pt 2)():365-9. PubMed ID: 1661740 [TBL] [Abstract][Full Text] [Related]
2. Role of cyclic GMP in the mediation of circadian rhythmicity of the adenylate cyclase-cyclic AMP-phosphodiesterase system in Euglena. Tong J; Edmunds LN Biochem Pharmacol; 1993 May; 45(10):2087-91. PubMed ID: 8390260 [TBL] [Abstract][Full Text] [Related]
3. Oscillator control of cell division in Euglena: cyclic AMP oscillations mediate the phasing of the cell division cycle by the circadian clock. Carré IA; Edmunds LN J Cell Sci; 1993 Apr; 104 ( Pt 4)():1163-73. PubMed ID: 8391014 [TBL] [Abstract][Full Text] [Related]
4. Rhythmic changes in the activities of NAD kinase and NADP phosphatase in the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Laval-Martin DL; Carré IA; Barbera SJ; Edmunds LN Arch Biochem Biophys; 1990 Feb; 276(2):433-41. PubMed ID: 2154948 [TBL] [Abstract][Full Text] [Related]
5. Circadian clock regulation of the bimodal rhythm of cyclic AMP in wild-type Euglena. Mohabir G; Edmunds LN Cell Signal; 1999 Feb; 11(2):143-7. PubMed ID: 10048792 [TBL] [Abstract][Full Text] [Related]
6. Circadian variations in the affinities of NAD kinase and NADP phosphatase for their substrates, NAD+ and NADP+, in dividing and nondividing cells of the achlorophyllous ZC mutant of Euglena gracilis Klebs (strain Z). Laval-Martin DL; Carré IA; Barbera SJ; Edmunds LN Chronobiol Int; 1990; 7(2):99-105. PubMed ID: 2173644 [TBL] [Abstract][Full Text] [Related]
9. Regulation of a NAD+ kinase activity isolated from asynchronous cultures of the achlorophyllous ZC mutant of Euglena gracilis. Pou de Crescenzo MA; Goto K; Carré IA; Laval-Martin DL Z Naturforsch C J Biosci; 1997; 52(9-10):623-35. PubMed ID: 9373994 [TBL] [Abstract][Full Text] [Related]
10. Day/night differences in the stimulation of adenylate cyclase activity by calcium/calmodulin in chick pineal cell cultures: evidence for circadian regulation of cyclic AMP. Nikaido SS; Takahashi JS J Biol Rhythms; 1998 Dec; 13(6):479-93. PubMed ID: 9850009 [TBL] [Abstract][Full Text] [Related]
12. Entrainment and Phase-Shifting of the Circadian Rhythm of Cell Division by Calcium in Synchronous Cultures of the Wild-Type Z Strain and of the ZC Achlorophyllous Mutant of Euglena gracilis. Tamponnet C; Edmunds LN Plant Physiol; 1990 Jun; 93(2):425-31. PubMed ID: 16667483 [TBL] [Abstract][Full Text] [Related]
13. Challenge of human Jurkat T-cells with the adenylate cyclase activator forskolin elicits major changes in cAMP phosphodiesterase (PDE) expression by up-regulating PDE3 and inducing PDE4D1 and PDE4D2 splice variants as well as down-regulating a novel PDE4A splice variant. Erdogan S; Houslay MD Biochem J; 1997 Jan; 321 ( Pt 1)(Pt 1):165-75. PubMed ID: 9003416 [TBL] [Abstract][Full Text] [Related]
14. Rhythms in second messenger mechanisms. Witte K; Lemmer B Pharmacol Ther; 1991; 51(2):231-7. PubMed ID: 1664525 [TBL] [Abstract][Full Text] [Related]
15. Correlation between adenosine 3',5'-cyclic monosphosphate levels, adenylate cyclase activity, and adenosine 3',5'-cyclic monophosphate phosphodiesterase activity in tissue culture cells stimulated by serum. Matsumoto T; Uchida T J Biochem; 1975 Oct; 78(4):811-5. PubMed ID: 175046 [TBL] [Abstract][Full Text] [Related]
16. Myosin heavy chain isoforms expression and cyclic AMP concentrations in hypoxia-induced hypertrophied right ventricle in rats. Hashimoto T; Sugiyama A; Taguchi S Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):365-70. PubMed ID: 15325336 [TBL] [Abstract][Full Text] [Related]
17. Interrelationship between adenylate cyclase activity, adenosine 3':5' cyclic monophosphate phosphodiesterase activity, adenosine 3':5' cyclic monophosphate levels, and growth of cells in culture. Anderson WB; Russell TR; Carchman RA; Pastan I Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3802-5. PubMed ID: 4359490 [TBL] [Abstract][Full Text] [Related]
18. Kinetic and thermodynamic characterization of adenylyl cyclase from Euglena gracilis. Jasso-Chávez R; Vega-Segura A; El-Hafidi M; Moreno-Sánchez R; Eugenia Torres-Márquez M Arch Biochem Biophys; 2002 Aug; 404(1):48-54. PubMed ID: 12127068 [TBL] [Abstract][Full Text] [Related]
19. 3',5'-cyclic adenosine monophosphate and adenylate cyclase in phototransduction by limulus ventral photoreceptors. Brown JE; Kaupp UB; Malbon CC J Physiol; 1984 Aug; 353():523-39. PubMed ID: 6207288 [TBL] [Abstract][Full Text] [Related]
20. Temporal coupling of cyclic AMP and Ca/calmodulin-stimulated adenylyl cyclase to the circadian clock in chick retinal photoreceptor cells. Chaurasia SS; Haque R; Pozdeyev N; Jackson CR; Iuvone PM J Neurochem; 2006 Nov; 99(4):1142-50. PubMed ID: 16981891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]