These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 16617416)

  • 1. Starch-based microspheres produced by emulsion crosslinking with a potential media dependent responsive behavior to be used as drug delivery carriers.
    Malafaya PB; Stappers F; Reis RL
    J Mater Sci Mater Med; 2006 Apr; 17(4):371-7. PubMed ID: 16617416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of controlled release of heparin from swellable crosslinked starch microspheres.
    Bajpai AK; Bhanu S
    J Mater Sci Mater Med; 2007 Aug; 18(8):1613-21. PubMed ID: 17483909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-linked starch microspheres: effect of cross-linking condition on the microsphere characteristics.
    Atyabi F; Manoochehri S; Moghadam SH; Dinarvand R
    Arch Pharm Res; 2006 Dec; 29(12):1179-86. PubMed ID: 17225470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive inorganic-materials/alginate composite microspheres with controllable drug-delivery ability.
    Wu C; Zhu Y; Chang J; Zhang Y; Xiao Y
    J Biomed Mater Res B Appl Biomater; 2010 Jul; 94(1):32-43. PubMed ID: 20225253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formulation and evaluation of flurbiprofen-loaded genipin cross-linked gelatin microspheres for intra-articular delivery.
    Kawadkar J; Jain R; Kishore R; Pathak A; Chauhan MK
    J Drug Target; 2013 Feb; 21(2):200-10. PubMed ID: 23249324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation and evaluation of ketorolac tromethamine-loaded albumin microspheres for potential intramuscular administration.
    Mathew ST; Devi SG; KV S
    AAPS PharmSciTech; 2007 Feb; 8(1):14. PubMed ID: 17408214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pickering emulsion stabilized by amphiphilic pH-sensitive starch nanoparticles as therapeutic containers.
    Sufi-Maragheh P; Nikfarjam N; Deng Y; Taheri-Qazvini N
    Colloids Surf B Biointerfaces; 2019 Sep; 181():244-251. PubMed ID: 31151037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of binder additives on terbutaline hydrogels of alpha-PVA/NaCl/H(2)O system in drug delivery: I. Effect of gelatin and soluble starch.
    Shaheen SM; Takezoe K; Yamaura K
    Biomed Mater Eng; 2004; 14(4):371-82. PubMed ID: 15472386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestine-Specific Delivery of Hydrophobic Bioactives from Oxidized Starch Microspheres with an Enhanced Stability.
    Wang S; Chen Y; Liang H; Chen Y; Shi M; Wu J; Liu X; Li Z; Liu B; Yuan Q; Li Y
    J Agric Food Chem; 2015 Oct; 63(39):8669-75. PubMed ID: 26414436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminated polysaccharide microspheres as DNA delivery systems.
    Constantin M; Fundueanu G; Cortesi R; Esposito E; Nastruzzi C
    Drug Deliv; 2003; 10(3):139-49. PubMed ID: 12944134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of aggregation-resistant biocompatible superparamagnetic noncovalent hybrid multilayer hollow microspheres for controlled drug release.
    Zhao X; Du P; Liu P
    Mol Pharm; 2012 Nov; 9(11):3330-9. PubMed ID: 22931055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolyzed polyacrylamide grafted maize starch based microbeads: application in pH responsive drug delivery.
    Setty CM; Deshmukh AS; Badiger AM
    Int J Biol Macromol; 2014 Sep; 70():1-9. PubMed ID: 24971555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured microspheres produced by supercritical fluid extraction of emulsions.
    Della Porta G; Reverchon E
    Biotechnol Bioeng; 2008 Aug; 100(5):1020-33. PubMed ID: 18383122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of controlled release microspheres using supercritical fluid technology for delivery of anti-inflammatory drugs.
    Duarte AR; Costa MS; Simplício AL; Cardoso MM; Duarte CM
    Int J Pharm; 2006 Feb; 308(1-2):168-74. PubMed ID: 16368203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A long acting biodegradable controlled delivery of chitosan microspheres loaded with tetanus toxoide as model antigen.
    Varma S; Sadasivan C
    Biomed Pharmacother; 2014 Mar; 68(2):225-30. PubMed ID: 24051124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Preparation of basic fibroblast growth factor chitosan microsphere and its properties].
    Chen W; Liu Z; Yue Y; Wan L; Hu J; Lü B
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Aug; 26(8):989-92. PubMed ID: 23012937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process.
    Wang LY; Gu YH; Zhou QZ; Ma GH; Wan YH; Su ZG
    Colloids Surf B Biointerfaces; 2006 Jul; 50(2):126-35. PubMed ID: 16787743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Starch-based polymeric carriers for oral-insulin delivery.
    Mahkam M
    J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Fabrication of Hollow Spherical Cellulose Beads: Application in pH-Responsive Therapeutic Delivery.
    Mohan T; Ajdnik U; Nagaraj C; Lackner F; Dobaj Štiglic A; Palani T; Amornkitbamrung L; Gradišnik L; Maver U; Kargl R; Stana Kleinschek K
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):3726-3739. PubMed ID: 35014252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-crosslinked pH-sensitive degradable micelles: A promising approach to resolve the extracellular stability versus intracellular drug release dilemma.
    Wu Y; Chen W; Meng F; Wang Z; Cheng R; Deng C; Liu H; Zhong Z
    J Control Release; 2012 Dec; 164(3):338-45. PubMed ID: 22800578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.