These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 16618104)
1. Proposal for a hydrogen bond network in the active site of the prototypic gamma-class carbonic anhydrase. Zimmerman SA; Ferry JG Biochemistry; 2006 Apr; 45(16):5149-57. PubMed ID: 16618104 [TBL] [Abstract][Full Text] [Related]
2. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Lesburg CA; Huang C; Christianson DW; Fierke CA Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308 [TBL] [Abstract][Full Text] [Related]
3. The catalytic properties of murine carbonic anhydrase VII. Earnhardt JN; Qian M; Tu C; Lakkis MM; Bergenhem NC; Laipis PJ; Tashian RE; Silverman DN Biochemistry; 1998 Jul; 37(30):10837-45. PubMed ID: 9692974 [TBL] [Abstract][Full Text] [Related]
4. Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii. Jeyakanthan J; Rangarajan S; Mridula P; Kanaujia SP; Shiro Y; Kuramitsu S; Yokoyama S; Sekar K Acta Crystallogr D Biol Crystallogr; 2008 Oct; 64(Pt 10):1012-9. PubMed ID: 18931408 [TBL] [Abstract][Full Text] [Related]
5. Reversal of the hydrogen bond to zinc ligand histidine-119 dramatically diminishes catalysis and enhances metal equilibration kinetics in carbonic anhydrase II. Huang CC; Lesburg CA; Kiefer LL; Fierke CA; Christianson DW Biochemistry; 1996 Mar; 35(11):3439-46. PubMed ID: 8639494 [TBL] [Abstract][Full Text] [Related]
6. Biochemical and crystallographic studies of the Met144Ala, Asp92Asn and His254Phe mutants of the nitrite reductase from Alcaligenes xylosoxidans provide insight into the enzyme mechanism. Ellis MJ; Prudêncio M; Dodd FE; Strange RW; Sawers G; Eady RR; Hasnain SS J Mol Biol; 2002 Feb; 316(1):51-64. PubMed ID: 11829502 [TBL] [Abstract][Full Text] [Related]
7. Structural analysis of the zinc hydroxide-Thr-199-Glu-106 hydrogen-bond network in human carbonic anhydrase II. Xue Y; Liljas A; Jonsson BH; Lindskog S Proteins; 1993 Sep; 17(1):93-106. PubMed ID: 7901850 [TBL] [Abstract][Full Text] [Related]
8. A structure-function study of a proton transport pathway in the gamma-class carbonic anhydrase from Methanosarcina thermophila. Tripp BC; Ferry JG Biochemistry; 2000 Aug; 39(31):9232-40. PubMed ID: 10924116 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
10. Examination of the role of Gln-158 in the mechanism of CO(2) hydration catalyzed by beta-carbonic anhydrase from Arabidopsis thaliana. Rowlett RS; Tu C; Murray PS; Chamberlin JE Arch Biochem Biophys; 2004 May; 425(1):25-32. PubMed ID: 15081890 [TBL] [Abstract][Full Text] [Related]
11. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Briganti F; Mangani S; Orioli P; Scozzafava A; Vernaglione G; Supuran CT Biochemistry; 1997 Aug; 36(34):10384-92. PubMed ID: 9265618 [TBL] [Abstract][Full Text] [Related]
12. Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Jackman JE; Merz KM; Fierke CA Biochemistry; 1996 Dec; 35(51):16421-8. PubMed ID: 8987973 [TBL] [Abstract][Full Text] [Related]
13. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions. Badarau A; Page MI Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217 [TBL] [Abstract][Full Text] [Related]
14. Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from phanerochaete chrysosporium. Rotsaert FA; Renganathan V; Gold MH Biochemistry; 2003 Apr; 42(14):4049-56. PubMed ID: 12680758 [TBL] [Abstract][Full Text] [Related]
15. Kinetic and spectroscopic characterization of the gamma-carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila. Alber BE; Colangelo CM; Dong J; Stålhandske CM; Baird TT; Tu C; Fierke CA; Silverman DN; Scott RA; Ferry JG Biochemistry; 1999 Oct; 38(40):13119-28. PubMed ID: 10529183 [TBL] [Abstract][Full Text] [Related]
16. Metal poison inhibition of carbonic anhydrase. Lindahl M; Svensson LA; Liljas A Proteins; 1993 Feb; 15(2):177-82. PubMed ID: 8441752 [TBL] [Abstract][Full Text] [Related]
17. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Xu Y; Feng L; Jeffrey PD; Shi Y; Morel FM Nature; 2008 Mar; 452(7183):56-61. PubMed ID: 18322527 [TBL] [Abstract][Full Text] [Related]
18. Roles of the conserved aspartate and arginine in the catalytic mechanism of an archaeal beta-class carbonic anhydrase. Smith KS; Ingram-Smith C; Ferry JG J Bacteriol; 2002 Aug; 184(15):4240-5. PubMed ID: 12107142 [TBL] [Abstract][Full Text] [Related]
19. A closer look at the active site of gamma-class carbonic anhydrases: high-resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Iverson TM; Alber BE; Kisker C; Ferry JG; Rees DC Biochemistry; 2000 Aug; 39(31):9222-31. PubMed ID: 10924115 [TBL] [Abstract][Full Text] [Related]
20. Mutational and structural studies of the diisopropylfluorophosphatase from Loligo vulgaris shed new light on the catalytic mechanism of the enzyme. Katsemi V; Lücke C; Koepke J; Löhr F; Maurer S; Fritzsch G; Rüterjans H Biochemistry; 2005 Jun; 44(25):9022-33. PubMed ID: 15966726 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]