These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16618133)

  • 1. Synthesis and extraction of beta-D-glucose-stabilized Au nanoparticles processed into low-defect, wide-area thin films and ordered arrays using CO2-expanded liquids.
    Liu J; Anand M; Roberts CB
    Langmuir; 2006 Apr; 22(9):3964-71. PubMed ID: 16618133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CO2-expanded liquid deposition of ligand-stabilized nanoparticles as uniform, wide-area nanoparticle films.
    McLeod MC; Kitchens CL; Roberts CB
    Langmuir; 2005 Mar; 21(6):2414-8. PubMed ID: 15752033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.
    Anand M; McLeod MC; Bell PW; Roberts CB
    J Phys Chem B; 2005 Dec; 109(48):22852-9. PubMed ID: 16853977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing.
    Tan BJ; Sow CH; Koh TS; Chin KC; Wee AT; Ong CK
    J Phys Chem B; 2005 Jun; 109(22):11100-9. PubMed ID: 16852354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-selective fractionation of nanoparticles at an application scale using CO2 gas-expanded liquids.
    Saunders SR; Roberts CB
    Nanotechnology; 2009 Nov; 20(47):475605. PubMed ID: 19875872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold nanoparticle deposition using CO2 expanded liquids: effect of pressure oscillation and surface-particle interactions.
    Bhosale PS; Stretz HA
    Langmuir; 2008 Nov; 24(21):12241-6. PubMed ID: 18828623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assembly of myoglobin layer-by-layer films with poly(propyleneimine) dendrimer-stabilized gold nanoparticles and its application in electrochemical biosensing.
    Zhang H; Hu N
    Biosens Bioelectron; 2007 Oct; 23(3):393-9. PubMed ID: 17561388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depositing ordered arrays of metal sulfide nanoparticles in nanostructures using supercritical fluid carbon dioxide.
    Wang JS; Smetana AB; Boeckl JJ; Brown GJ; Wai CM
    Langmuir; 2010 Jan; 26(2):1117-23. PubMed ID: 20000595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles.
    Ahn W; Taylor B; Dall'Asén AG; Roper DK
    Langmuir; 2008 Apr; 24(8):4174-84. PubMed ID: 18324846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle formation in Au thin films by electron-beam-induced dewetting.
    Kojima Y; Kato T
    Nanotechnology; 2008 Jun; 19(25):255605. PubMed ID: 21828657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt nanoparticle arrays made by templated solid-state dewetting.
    Oh YJ; Ross CA; Jung YS; Wang Y; Thompson CV
    Small; 2009 Apr; 5(7):860-5. PubMed ID: 19189331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of metal-semiconductor core-shell nanoparticles using electrochemical surface-limited reactions.
    Gu C; Xu H; Park M; Shannon C
    Langmuir; 2009 Jan; 25(1):410-4. PubMed ID: 19063617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanochemistry in confined environments: polyelectrolyte brush-assisted synthesis of gold nanoparticles inside ordered mesoporous thin films.
    Calvo A; Fuertes MC; Yameen B; Williams FJ; Azzaroni O; Soler-Illia GJ
    Langmuir; 2010 Apr; 26(8):5559-67. PubMed ID: 20166726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional Pt-coated Au nanoparticle arrays: applications for electrocatalysis and surface-enhanced Raman scattering.
    Park YK; Yoo SH; Park S
    Langmuir; 2008 Apr; 24(8):4370-5. PubMed ID: 18324847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the interparticle spacing of Au-salt loaded micelles and Au nanoparticles on flat surfaces.
    Bansmann J; Kielbassa S; Hoster H; Weigl F; Boyen HG; Wiedwald U; Ziemann P; Behm RJ
    Langmuir; 2007 Sep; 23(20):10150-5. PubMed ID: 17722939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoparticle-mediated electron transfer across ultrathin self-assembled films.
    Zhao J; Bradbury CR; Huclova S; Potapova I; Carrara M; Fermín DJ
    J Phys Chem B; 2005 Dec; 109(48):22985-94. PubMed ID: 16853995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Au nanoparticle network-type thin films formed via mixed assembling and cross-linking route for biosensor application: quartz crystal microbalance study.
    Shen G; Wang H; Shen G; Yu R
    Anal Biochem; 2007 Jun; 365(1):1-6. PubMed ID: 17434135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled photochemical particle growth in two-dimensional ordered metal nanoparticle arrays.
    Härtling T; Seidenstücker A; Olk P; Plettl A; Ziemann P; Eng LM
    Nanotechnology; 2010 Apr; 21(14):145309. PubMed ID: 20234077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.