BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16618493)

  • 1. Recombinant Thermus aquaticus RNA polymerase for structural studies.
    Kuznedelov K; Lamour V; Patikoglou G; Chlenov M; Darst SA; Severinov K
    J Mol Biol; 2006 May; 359(1):110-21. PubMed ID: 16618493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of the largest RNA polymerase subunit lid element in preventing the formation of extended RNA-DNA hybrid.
    Naryshkina T; Kuznedelov K; Severinov K
    J Mol Biol; 2006 Aug; 361(4):634-43. PubMed ID: 16781733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit.
    Chlenov M; Masuda S; Murakami KS; Nikiforov V; Darst SA; Mustaev A
    J Mol Biol; 2005 Oct; 353(1):138-54. PubMed ID: 16154587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of Thermus aquaticus Gfh1, a Gre-factor paralog that inhibits rather than stimulates transcript cleavage.
    Lamour V; Hogan BP; Erie DA; Darst SA
    J Mol Biol; 2006 Feb; 356(1):179-88. PubMed ID: 16337964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant Thermus aquaticus RNA polymerase, a new tool for structure-based analysis of transcription.
    Minakhin L; Nechaev S; Campbell EA; Severinov K
    J Bacteriol; 2001 Jan; 183(1):71-6. PubMed ID: 11114902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of recombinant Thermus aquaticus RNA polymerase.
    Kuznedelov K; Minakhin L; Severinov K
    Methods Enzymol; 2003; 370():94-108. PubMed ID: 14712637
    [No Abstract]   [Full Text] [Related]  

  • 7. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution.
    Murakami KS; Masuda S; Darst SA
    Science; 2002 May; 296(5571):1280-4. PubMed ID: 12016306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification, crystallization and initial crystallographic analysis of RNA polymerase holoenzyme from Thermus thermophilus.
    Vassylyeva MN; Lee J; Sekine SI; Laptenko O; Kuramitsu S; Shibata T; Inoue Y; Borukhov S; Vassylyev DG; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2002 Sep; 58(Pt 9):1497-500. PubMed ID: 12198314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normal-mode analysis suggests protein flexibility modulation throughout RNA polymerase's functional cycle.
    Van Wynsberghe A; Li G; Cui Q
    Biochemistry; 2004 Oct; 43(41):13083-96. PubMed ID: 15476402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific aptamer inhibitors of Thermus RNA polymerase.
    Miropolskaya N; Feklistov A; Nikiforov V; Kulbachinskiy A
    Biochem Biophys Res Commun; 2018 Jan; 495(1):110-115. PubMed ID: 29097207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational studies of archaeal RNA polymerase and analysis of hybrid RNA polymerases.
    Thomm M; Reich C; Grünberg S; Naji S
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):18-22. PubMed ID: 19143595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic analysis of Thermus aquaticus RNA polymerase holoenzyme and a holoenzyme/promoter DNA complex.
    Murakami KS; Masuda S; Darst SA
    Methods Enzymol; 2003; 370():42-53. PubMed ID: 14712632
    [No Abstract]   [Full Text] [Related]  

  • 13. Crystal structure of Thermus aquaticus DNA polymerase.
    Kim Y; Eom SH; Wang J; Lee DS; Suh SW; Steitz TA
    Nature; 1995 Aug; 376(6541):612-6. PubMed ID: 7637814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for transcription elongation by bacterial RNA polymerase.
    Vassylyev DG; Vassylyeva MN; Perederina A; Tahirov TH; Artsimovitch I
    Nature; 2007 Jul; 448(7150):157-62. PubMed ID: 17581590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme.
    Feklistov A; Barinova N; Sevostyanova A; Heyduk E; Bass I; Vvedenskaya I; Kuznedelov K; Merkiene E; Stavrovskaya E; Klimasauskas S; Nikiforov V; Heyduk T; Severinov K; Kulbachinskiy A
    Mol Cell; 2006 Jul; 23(1):97-107. PubMed ID: 16798040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Synthesis of a highly active recombinant Thermus aquaticus His6-DNA-polymerase in Escherichia coli cells and a rapid method of purifying it].
    Smirnov IuV; Fradkov AF; Chakhmakhcheva OG; Efimov VA
    Bioorg Khim; 1995 May; 21(5):396-8. PubMed ID: 7544973
    [No Abstract]   [Full Text] [Related]  

  • 17. Recombinant His-tagged DNA polymerase. II. Cloning and purification of Thermus aquaticus recombinant DNA polymerase (Stoffel fragment).
    Dabrowski S; Kur J
    Acta Biochim Pol; 1998; 45(3):661-7. PubMed ID: 9918492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA polymerase-promoter interactions determining different stability of the Escherichia coli and Thermus aquaticus transcription initiation complexes.
    Mekler V; Minakhin L; Kuznedelov K; Mukhamedyarov D; Severinov K
    Nucleic Acids Res; 2012 Dec; 40(22):11352-62. PubMed ID: 23087380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of archaeal RNA polymerases.
    Werner F
    Mol Microbiol; 2007 Sep; 65(6):1395-404. PubMed ID: 17697097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the lid element in transcription by E. coli RNA polymerase.
    Toulokhonov I; Landick R
    J Mol Biol; 2006 Aug; 361(4):644-58. PubMed ID: 16876197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.