BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16618530)

  • 1. A graphical screening method for assessing stream water quality using specific conductivity and alkalinity data.
    Kney AD; Brandes D
    J Environ Manage; 2007 Mar; 82(4):519-28. PubMed ID: 16618530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using electronic conductivity and hardness data for rapid assessment of stream water quality.
    Thompson MY; Brandes D; Kney AD
    J Environ Manage; 2012 Aug; 104():152-7. PubMed ID: 22495016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Groundtruthing and potential for predicting acid deposition impacts in headwater streams using bedrock geology, GIS, angling, and stream chemistry.
    Kirby CS; McInerney B; Turner MD
    Sci Total Environ; 2008 Apr; 393(2-3):249-61. PubMed ID: 18258282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A long-term, multitrophic level study to assess pulp and paper mill effluent effects on aquatic communities in four US receiving waters: characteristics of the study streams, sample sites, mills, and mill effluents.
    Hall TJ; Ragsdale RL; Arthurs WJ; Ikoma J; Borton DL; Cook DL
    Integr Environ Assess Manag; 2009 Apr; 5(2):199-218. PubMed ID: 19063588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baseflow contribution to nitrates in an urban stream in Daejeon, Korea.
    Kim G; Lee H; Lim Y; Jung M; Kong D
    Water Sci Technol; 2010; 61(12):3216-20. PubMed ID: 20555219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prediction method for radon in groundwater using GIS and multivariate statistics.
    Skeppström K; Olofsson B
    Sci Total Environ; 2006 Aug; 367(2-3):666-80. PubMed ID: 16580708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Baseflow nitrate in relation to stream order and agricultural land use.
    Kang S; Lin H; Gburek WJ; Folmar GJ; Lowery B
    J Environ Qual; 2008; 37(3):808-16. PubMed ID: 18453401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weathering and erosion fluxes of arsenic in watershed mass budgets.
    Drahota P; Paces T; Pertold Z; Mihaljevic M; Skrivan P
    Sci Total Environ; 2006 Dec; 372(1):306-16. PubMed ID: 17067656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying hydrologically sensitive areas: bridging the gap between science and application.
    Agnew LJ; Lyon S; Gérard-Marchant P; Collins VB; Lembo AJ; Steenhuis TS; Walter MT
    J Environ Manage; 2006 Jan; 78(1):63-76. PubMed ID: 16169658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stream bottom resistivity tomography to map ground water discharge.
    Nyquist JE; Freyer PA; Toran L
    Ground Water; 2008; 46(4):561-9. PubMed ID: 18373670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fecal bacteria in the rivers of the Seine drainage network (France): sources, fate and modelling.
    Servais P; Garcia-Armisen T; George I; Billen G
    Sci Total Environ; 2007 Apr; 375(1-3):152-67. PubMed ID: 17239424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground water quality in Coimbatore, Tamil Nadu along Noyyal River.
    Sundar ML; Saseetharan MK
    J Environ Sci Eng; 2008 Jul; 50(3):187-90. PubMed ID: 19552071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A stream-based methane monitoring approach for evaluating groundwater impacts associated with unconventional gas development.
    Heilweil VM; Stolp BJ; Kimball BA; Susong DD; Marston TM; Gardner PM
    Ground Water; 2013; 51(4):511-24. PubMed ID: 23758706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatially explicit framework for quantifying downstream hydrologic conditions.
    Strager MP; Petty JT; Strager JM; Barker-Fulton J
    J Environ Manage; 2009 Apr; 90(5):1854-61. PubMed ID: 19155121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incomplete mixing in a small, urban stream.
    Ryan RJ; Boufadel MC
    J Environ Manage; 2006 Oct; 81(1):50-7. PubMed ID: 16616410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Test of APEX for nine forested watersheds in East Texas.
    Wang X; Saleh A; McBroom MW; Williams JR; Yin L
    J Environ Qual; 2007; 36(4):983-95. PubMed ID: 17526877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting water quality impaired stream segments using landscape-scale data and a regional geostatistical model: a case study in Maryland.
    Peterson EE; Urquhart NS
    Environ Monit Assess; 2006 Oct; 121(1-3):615-38. PubMed ID: 16967209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of future stream alkalinity under changing deposition and climate scenarios.
    Welsch DL; Cosby BJ; Hornberger GM
    Sci Total Environ; 2006 Aug; 367(2-3):800-10. PubMed ID: 16600331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-specific trends in river-water quality resulting from the effects of the Clean Air Act in three mesoscale, forested river basins in the northeastern United States through 2002.
    Murdoch PS; Shanley JB
    Environ Monit Assess; 2006 Sep; 120(1-3):1-25. PubMed ID: 16897528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A procedure to define natural groundwater conditions of groundwater bodies in Germany.
    Wendland F; Hannappel S; Kunkel R; Schenk R; Voigt HJ; Wolter R
    Water Sci Technol; 2005; 51(3-4):249-57. PubMed ID: 15850197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.