These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 16618938)

  • 1. Development of bat flight: morphologic and molecular evolution of bat wing digits.
    Sears KE; Behringer RR; Rasweiler JJ; Niswander LA
    Proc Natl Acad Sci U S A; 2006 Apr; 103(17):6581-6. PubMed ID: 16618938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification.
    Weatherbee SD; Behringer RR; Rasweiler JJ; Niswander LA
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15103-7. PubMed ID: 17015842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique expression patterns of multiple key genes associated with the evolution of mammalian flight.
    Wang Z; Dai M; Wang Y; Cooper KL; Zhu T; Dong D; Zhang J; Zhang S
    Proc Biol Sci; 2014 May; 281(1783):20133133. PubMed ID: 24695426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Digital gene expression tag profiling of bat digits provides robust candidates contributing to wing formation.
    Wang Z; Dong D; Ru B; Young RL; Han N; Guo T; Zhang S
    BMC Genomics; 2010 Nov; 11():619. PubMed ID: 21054883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution and development of mammalian flight.
    Cooper LN; Cretekos CJ; Sears KE
    Wiley Interdiscip Rev Dev Biol; 2012; 1(5):773-9. PubMed ID: 23799572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular determinants of bat wing development.
    Sears KE
    Cells Tissues Organs; 2008; 187(1):6-12. PubMed ID: 18160799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of Meis2, Mab21l2 and Tbx3 during limb development associated with diversification of limb morphology in mammals.
    Dai M; Wang Y; Fang L; Irwin DM; Zhu T; Zhang J; Zhang S; Wang Z
    PLoS One; 2014; 9(8):e106100. PubMed ID: 25166052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The developmental basis of bat wing muscle.
    Tokita M; Abe T; Suzuki K
    Nat Commun; 2012; 3():1302. PubMed ID: 23250432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primitive Early Eocene bat from Wyoming and the evolution of flight and echolocation.
    Simmons NB; Seymour KL; Habersetzer J; Gunnell GF
    Nature; 2008 Feb; 451(7180):818-21. PubMed ID: 18270539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How the pterosaur got its wings.
    Tokita M
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1163-78. PubMed ID: 25361444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bat wing sensors support flight control.
    Sterbing-D'Angelo S; Chadha M; Chiu C; Falk B; Xian W; Barcelo J; Zook JM; Moss CF
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):11291-6. PubMed ID: 21690408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity in the organization of elastin bundles and intramembranous muscles in bat wings.
    Cheney JA; Allen JJ; Swartz SM
    J Anat; 2017 Apr; 230(4):510-523. PubMed ID: 28070887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplifying a wing: diversity and functional consequences of digital joint reduction in bat wings.
    Bahlman JW; Price-Waldman RM; Lippe HW; Breuer KS; Swartz SM
    J Anat; 2016 Jul; 229(1):114-27. PubMed ID: 26969851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bat flight: aerodynamics, kinematics and flight morphology.
    Hedenström A; Johansson LC
    J Exp Biol; 2015 Mar; 218(Pt 5):653-63. PubMed ID: 25740899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Measurements of the Wing Kinematics of a Bat in Straight Flight.
    Singh SK; Zhang LB; Zhao JS
    J Biomech Eng; 2021 Apr; 143(4):. PubMed ID: 33210129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Falling with Style: Bats Perform Complex Aerial Rotations by Adjusting Wing Inertia.
    Bergou AJ; Swartz SM; Vejdani H; Riskin DK; Reimnitz L; Taubin G; Breuer KS
    PLoS Biol; 2015; 13(11):e1002297. PubMed ID: 26569116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of early development in mammalian limb diversification: a descriptive comparison of early limb development between the Natal long-fingered bat (Miniopterus natalensis) and the mouse (Mus musculus).
    Hockman D; Mason MK; Jacobs DS; Illing N
    Dev Dyn; 2009 Apr; 238(4):965-79. PubMed ID: 19253395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic and epigenomic characterization of the developing bat wing.
    Eckalbar WL; Schlebusch SA; Mason MK; Gill Z; Parker AV; Booker BM; Nishizaki S; Muswamba-Nday C; Terhune E; Nevonen KA; Makki N; Friedrich T; VanderMeer JE; Pollard KS; Carbone L; Wall JD; Illing N; Ahituv N
    Nat Genet; 2016 May; 48(5):528-36. PubMed ID: 27019111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.
    Chin DD; Matloff LY; Stowers AK; Tucci ER; Lentink D
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28592663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the bat limb skeleton: scaling, material properties and mechanics.
    Swartz SM; Middleton KM
    Cells Tissues Organs; 2008; 187(1):59-84. PubMed ID: 18160803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.