These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 16619646)

  • 1. Pressure-programmable shunt valves.
    Dickerman RD; Colleb K; Morganb JT; Schneiderb S
    J Neurosurg; 2006 Apr; 104(4 Suppl):294; author reply 294. PubMed ID: 16619646
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of 3-tesla magnetic resonance imaging on various pressure programmable shunt valves.
    Inoue T; Kuzu Y; Ogasawara K; Ogawa A
    J Neurosurg; 2005 Aug; 103(2 Suppl):163-5. PubMed ID: 16370283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adjustable cerebrospinal fluid shunt valves in 3.0-Tesla MRI: a phantom study using explanted devices.
    Akbar M; Aschoff A; Georgi JC; Nennig E; Heiland S; Abel R; Stippich C
    Rofo; 2010 Jul; 182(7):594-602. PubMed ID: 20563954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explanted shunt valves: factors contributing to their failure.
    Brydon HL; Bayston R; Hayward RD; Harkness WF
    Eur J Pediatr Surg; 1994 Dec; 4 Suppl 1():37-8. PubMed ID: 7766553
    [No Abstract]   [Full Text] [Related]  

  • 6. Magnetically programmable shunt valve: MRI at 3-Tesla.
    Shellock FG; Wilson SF; Mauge CP
    Magn Reson Imaging; 2007 Sep; 25(7):1116-21. PubMed ID: 17707175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance imaging and cerebrospinal fluid shunt valves.
    Akbar M; Stippich C; Aschoff A
    N Engl J Med; 2005 Sep; 353(13):1413-4. PubMed ID: 16192492
    [No Abstract]   [Full Text] [Related]  

  • 8. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Fransen P
    Neurosurgery; 1998 Feb; 42(2):430. PubMed ID: 9482199
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of vagus nerve stimulator magnet on programmable shunt settings.
    Jandial R; Aryan HE; Hughes SA; Levy ML
    Neurosurgery; 2004 Sep; 55(3):627-9; discussion 629-30. PubMed ID: 15335429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance imaging and cerebrospinal fluid valves.
    Mauge C; Lilienfeld S
    N Engl J Med; 2006 Feb; 354(5):531-2; author reply 531-2. PubMed ID: 16452572
    [No Abstract]   [Full Text] [Related]  

  • 12. Determining the best cerebrospinal fluid shunt valve design: the pediatric valve design trial.
    Drake JM; Kestle JT
    Neurosurgery; 1998 Nov; 43(5):1259-60. PubMed ID: 9802875
    [No Abstract]   [Full Text] [Related]  

  • 13. Effect of 3T MRI on the function of shunt valves--evaluation of Paedi GAV, Dual Switch and proGAV.
    Lindner D; Preul C; Trantakis C; Moeller H; Meixensberger J
    Eur J Radiol; 2005 Oct; 56(1):56-9. PubMed ID: 16168265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concurrent use of a lumboperitoneal shunt with programmable valve and ventricular access device in the treatment of pseudotumor cerebri: review of 40 cases.
    Nadkarni TD; Rekate HL; Wallace D
    J Neurosurg Pediatr; 2008 Jul; 2(1):19-24. PubMed ID: 18590390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of protein and blood cells on the flow-pressure characteristics of shunts.
    Brydon HL; Bayston R; Hayward R; Harkness W
    Neurosurgery; 1996 Mar; 38(3):498-504; discussion 505. PubMed ID: 8837802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of cell phone magnetic fields on adjustable cerebrospinal fluid shunt valves.
    Nomura S; Fujisawa H; Suzuki M
    Surg Neurol; 2005 May; 63(5):467-8. PubMed ID: 15883076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Quality control of shunt systems--status of automated testing of cerebrospinal fluid drainage systems].
    Walter M; Wabel P; Aschoff A; Steudel WI; Leonhardt S
    Biomed Tech (Berl); 1997; 42 Suppl():5-6. PubMed ID: 9517021
    [No Abstract]   [Full Text] [Related]  

  • 18. [Development of shunt technology especially for idiopathic normal pressure hydrocephalus].
    Hashimoto MA
    Brain Nerve; 2008 Mar; 60(3):247-55. PubMed ID: 18402072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paroxysmal radiculopathy associated to raised CSF pressure in a patient with spinal meningeal cysts.
    González-Bonet LG; Ortiz-Sánchez P; Barcia-Mariño C
    Clin Neurol Neurosurg; 2011 May; 113(4):332-4. PubMed ID: 21269760
    [No Abstract]   [Full Text] [Related]  

  • 20. Predicting the outcome of shunt surgery in normal pressure hydrocephalus.
    Ramesh VG
    J Clin Neurosci; 2008 Sep; 15(9):1067; author reply 1067-8. PubMed ID: 18640840
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.