These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 16620032)

  • 1. The Mlx network: evidence for a parallel Max-like transcriptional network that regulates energy metabolism.
    Billin AN; Ayer DE
    Curr Top Microbiol Immunol; 2006; 302():255-78. PubMed ID: 16620032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MondoA, a novel basic helix-loop-helix-leucine zipper transcriptional activator that constitutes a positive branch of a max-like network.
    Billin AN; Eilers AL; Coulter KL; Logan JS; Ayer DE
    Mol Cell Biol; 2000 Dec; 20(23):8845-54. PubMed ID: 11073985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis.
    Diolaiti D; McFerrin L; Carroll PA; Eisenman RN
    Biochim Biophys Acta; 2015 May; 1849(5):484-500. PubMed ID: 24857747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural aspects of interactions within the Myc/Max/Mad network.
    Nair SK; Burley SK
    Curr Top Microbiol Immunol; 2006; 302():123-43. PubMed ID: 16620027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The MNT transcription factor autoregulates its expression and supports proliferation in MYC-associated factor X (MAX)-deficient cells.
    Lafita-Navarro MC; Liaño-Pons J; Quintanilla A; Varela I; Blanco R; Ourique F; Bretones G; Aresti J; Molina E; Carroll P; Hurlin P; Romero OA; Sanchez-Céspedes M; Eisenman RN; Delgado MD; León J
    J Biol Chem; 2020 Feb; 295(7):2001-2017. PubMed ID: 31919096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mad side of the Max network: antagonizing the function of Myc and more.
    Rottmann S; Lüscher B
    Curr Top Microbiol Immunol; 2006; 302():63-122. PubMed ID: 16620026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mlx, a novel Max-like BHLHZip protein that interacts with the Max network of transcription factors.
    Billin AN; Eilers AL; Queva C; Ayer DE
    J Biol Chem; 1999 Dec; 274(51):36344-50. PubMed ID: 10593926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mondo/ChREBP-Mlx-regulated transcriptional network is essential for dietary sugar tolerance in Drosophila.
    Havula E; Teesalu M; Hyötyläinen T; Seppälä H; Hasygar K; Auvinen P; Orešič M; Sandmann T; Hietakangas V
    PLoS Genet; 2013 Apr; 9(4):e1003438. PubMed ID: 23593032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel N-terminal domain may dictate the glucose response of Mondo proteins.
    McFerrin LG; Atchley WR
    PLoS One; 2012; 7(4):e34803. PubMed ID: 22506051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of the interaction of b/HLH/Z transcription factors Myc, Max, and Mad with cognate DNA.
    Ecevit O; Khan MA; Goss DJ
    Biochemistry; 2010 Mar; 49(12):2627-35. PubMed ID: 20170194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myc and ChREBP transcription factors cooperatively regulate normal and neoplastic hepatocyte proliferation in mice.
    Wang H; Dolezal JM; Kulkarni S; Lu J; Mandel J; Jackson LE; Alencastro F; Duncan AW; Prochownik EV
    J Biol Chem; 2018 Sep; 293(38):14740-14757. PubMed ID: 30087120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the Max and Mlx networks in animals.
    McFerrin LG; Atchley WR
    Genome Biol Evol; 2011; 3():915-37. PubMed ID: 21859806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myc/Max/Mad in invertebrates: the evolution of the Max network.
    Gallant P
    Curr Top Microbiol Immunol; 2006; 302():235-53. PubMed ID: 16620031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity.
    Ayer DE; Kretzner L; Eisenman RN
    Cell; 1993 Jan; 72(2):211-22. PubMed ID: 8425218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WBSCR14, a gene mapping to the Williams--Beuren syndrome deleted region, is a new member of the Mlx transcription factor network.
    Cairo S; Merla G; Urbinati F; Ballabio A; Reymond A
    Hum Mol Genet; 2001 Mar; 10(6):617-27. PubMed ID: 11230181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and properties of a Myc derivative that efficiently homodimerizes.
    Soucek L; Helmer-Citterich M; Sacco A; Jucker R; Cesareni G; Nasi S
    Oncogene; 1998 Nov; 17(19):2463-72. PubMed ID: 9824157
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel heterodimerization domain, CRM1, and 14-3-3 control subcellular localization of the MondoA-Mlx heterocomplex.
    Eilers AL; Sundwall E; Lin M; Sullivan AA; Ayer DE
    Mol Cell Biol; 2002 Dec; 22(24):8514-26. PubMed ID: 12446771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells.
    Grinberg AV; Hu CD; Kerppola TK
    Mol Cell Biol; 2004 May; 24(10):4294-308. PubMed ID: 15121849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic in vivo interactions among Myc network members.
    Yin X; Landay MF; Han W; Levitan ES; Watkins SC; Levenson RM; Farkas DL; Prochownik EV
    Oncogene; 2001 Aug; 20(34):4650-64. PubMed ID: 11498788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.