These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16620126)

  • 1. Shape/size-controlled syntheses of metal nanoparticles for site-selective modification of carbon nanotubes.
    Qu L; Dai L; Osawa E
    J Am Chem Soc; 2006 Apr; 128(16):5523-32. PubMed ID: 16620126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes.
    Qu L; Dai L
    J Am Chem Soc; 2005 Aug; 127(31):10806-7. PubMed ID: 16076167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocatalytic oxidation of ethylene glycol on Pt and Pt-Ru nanoparticles modified multi-walled carbon nanotubes.
    Selvaraj V; Vinoba M; Alagar M
    J Colloid Interface Sci; 2008 Jun; 322(2):537-44. PubMed ID: 18402968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective deposition of metal nanoparticles inside or outside multiwalled carbon nanotubes.
    Tessonnier JP; Ersen O; Weinberg G; Pham-Huu C; Su DS; Schlögl R
    ACS Nano; 2009 Aug; 3(8):2081-9. PubMed ID: 19702319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution.
    Wang Y; Xu X; Tian Z; Zong Y; Cheng H; Lin C
    Chemistry; 2006 Mar; 12(9):2542-9. PubMed ID: 16389619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalization of carbon nanotubes by an ionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol.
    Wu B; Hu D; Kuang Y; Liu B; Zhang X; Chen J
    Angew Chem Int Ed Engl; 2009; 48(26):4751-4. PubMed ID: 19452506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-assisted synthesis of pt nanocrystals and deposition on carbon nanotubes in ionic liquids.
    Liu Z; Sun Z; Han B; Zhang J; Huang J; Du J; Miao S
    J Nanosci Nanotechnol; 2006 Jan; 6(1):175-9. PubMed ID: 16573091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrically charged carbon nanotubes by controlled functionalization.
    Peng Q; Qu L; Dai L; Park K; Vaia RA
    ACS Nano; 2008 Sep; 2(9):1833-40. PubMed ID: 19206422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon.
    Chen X; Eckhard K; Zhou M; Bron M; Schuhmann W
    Anal Chem; 2009 Sep; 81(18):7597-603. PubMed ID: 19673537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-density assembly of gold nanoparticles on multiwalled carbon nanotubes using 1-pyrenemethylamine as interlinker.
    Ou YY; Huang MH
    J Phys Chem B; 2006 Feb; 110(5):2031-6. PubMed ID: 16471779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations.
    Ma R; Sasaki T; Bando Y
    J Am Chem Soc; 2004 Aug; 126(33):10382-8. PubMed ID: 15315453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotubes as a secondary support of a catalyst layer in a gas diffusion electrode for metal air batteries.
    Huang H; Zhang W; Li M; Gan Y; Chen J; Kuang Y
    J Colloid Interface Sci; 2005 Apr; 284(2):593-9. PubMed ID: 15780298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of ordered catalytically active nanoparticles derived from block copolymer micelle templates for controllable synthesis of single-walled carbon nanotubes.
    Lu J; Yi SS; Kopley T; Qian C; Liu J; Gulari E
    J Phys Chem B; 2006 Apr; 110(13):6655-60. PubMed ID: 16570969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rigid nanoscopic containers for highly dispersed, stable metal and bimetal nanoparticles with both size and site control.
    Wang C; Zhu G; Li J; Cai X; Wei Y; Zhang D; Qiu S
    Chemistry; 2005 Aug; 11(17):4975-82. PubMed ID: 15973750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals.
    Plascencia-Villa G; Saniger JM; Ascencio JA; Palomares LA; Ramírez OT
    Biotechnol Bioeng; 2009 Dec; 104(5):871-81. PubMed ID: 19655393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instantaneous formation of metal and metal oxide nanoparticles on carbon nanotubes and graphene via solvent-free microwave heating.
    Lin Y; Baggett DW; Kim JW; Siochi EJ; Connell JW
    ACS Appl Mater Interfaces; 2011 May; 3(5):1652-64. PubMed ID: 21517032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of diameter-controlled carbon nanotubes from fe-v-o nanoparticles size-classified by ligand-exchanged fractional precipitation.
    Gunjishima I; Inoue T; Okamoto A
    Langmuir; 2008 Mar; 24(6):2407-11. PubMed ID: 18260682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys.
    Sun Y; Wiley B; Li ZY; Xia Y
    J Am Chem Soc; 2004 Aug; 126(30):9399-406. PubMed ID: 15281832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.