These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 1662018)

  • 21. Rapid activation and partial inactivation of inositol trisphosphate receptors by inositol trisphosphate.
    Marchant JS; Taylor CW
    Biochemistry; 1998 Aug; 37(33):11524-33. PubMed ID: 9708988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-conductance high selective inositol (1,4,5)-trisphosphate activated Ca2+ channels in plasma membrane of A431 carcinoma cells.
    Kiselyov KI; Mamin AG; Semyonova SB; Mozhayeva GN
    FEBS Lett; 1997 May; 407(3):309-12. PubMed ID: 9175874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IP3-activated calcium-permeable channels in the inside-out patches of cultured cerebellar Purkinje cells.
    Kuno M; Maeda N; Mikoshiba K
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1128-35. PubMed ID: 8147853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two types of high-threshold calcium currents inhibited by omega-conotoxin in nerve terminals of rat neurohypophysis.
    Wang X; Treistman SN; Lemos JR
    J Physiol; 1992 Jan; 445():181-99. PubMed ID: 1323666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca(2+)-channel.
    Magnusson A; Haug LS; Walaas SI; Ostvold AC
    FEBS Lett; 1993 Jun; 323(3):229-32. PubMed ID: 8388808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rat brain endoplasmic reticulum calcium pools are anatomically and functionally segregated.
    Verma A; Ross CA; Verma D; Supattapone S; Snyder SH
    Cell Regul; 1990 Sep; 1(10):781-90. PubMed ID: 1966012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [A new type of IP3-sensitive highly selective calcium channels of low conductance in the plasma membrane of carcinoma A 431 cells].
    Kiselev KI; Mamin AG; Semenova SB; Mozhaeva GN
    Tsitologiia; 1997; 39(6):395-408. PubMed ID: 9381558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inositol 1,4,5-trisphosphate [correction of tris-phosphate] activation of inositol trisphosphate [correction of tris-phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition.
    Mak DO; McBride S; Foskett JK
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15821-5. PubMed ID: 9861054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition.
    van Rossum DB; Patterson RL; Kiselyov K; Boehning D; Barrow RK; Gill DL; Snyder SH
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2323-7. PubMed ID: 14983008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulatory and spatial aspects of inositol trisphosphate-mediated calcium signals.
    Horne JH
    Cell Biochem Biophys; 1999; 30(2):267-86. PubMed ID: 10356645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isoform-specific function of single inositol 1,4,5-trisphosphate receptor channels.
    Ramos-Franco J; Fill M; Mignery GA
    Biophys J; 1998 Aug; 75(2):834-9. PubMed ID: 9675184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inositol 1,3,4,5-tetrakisphosphate-gated channels interact with inositol 1,4,5-trisphosphate-gated channels in olfactory receptor neurons.
    Fadool DA; Ache BW
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9471-5. PubMed ID: 7937791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Opening of dihydropyridine calcium channels in skeletal muscle membranes by inositol trisphosphate.
    Vilven J; Coronado R
    Nature; 1988 Dec; 336(6199):587-9. PubMed ID: 2462164
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inositol trisphosphate-induced calcium release in brain microsomes.
    Shah J; Cohen RS; Pant HC
    Brain Res; 1987 Sep; 419(1-2):1-6. PubMed ID: 3499950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of membrane depolarization on intracellular calcium in single nerve terminals.
    Stuenkel EL
    Brain Res; 1990 Oct; 529(1-2):96-101. PubMed ID: 2282508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basic FGF enhances calcium permeable channel openings in adult rat cardiac myocytes: implication in the bFGF-induced increase of free Ca2+ content.
    Merle PL; Usson Y; Robert-Nicoud M; Verdetti J
    J Mol Cell Cardiol; 1997 Oct; 29(10):2687-98. PubMed ID: 9344763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exocytosis, calcium oscillations, and novel glutamate release blockers as resolved by rapid superfusion.
    Goldin SM; Finch EA; Reddy NL; Hu LY; Subbarao K
    Ann N Y Acad Sci; 1994 Mar; 710():271-86. PubMed ID: 7908785
    [No Abstract]   [Full Text] [Related]  

  • 38. Single channel recordings of Nt- and L-type Ca2+ currents in rat neurohypophysial terminals.
    Wang X; Treistman SN; Lemos JR
    J Neurophysiol; 1993 Oct; 70(4):1617-28. PubMed ID: 8283218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of cytoplasmic free Ca2+ in insulin-secreting cells.
    Berggren PO; Arkhammar P; Islam MS; Juntti-Berggren L; Khan A; Kindmark H; Köhler M; Larsson K; Larsson O; Nilsson T
    Adv Exp Med Biol; 1993; 334():25-45. PubMed ID: 8249687
    [No Abstract]   [Full Text] [Related]  

  • 40. [Ca2+]i-sensitive, IP3-independent Ca2+ influx in smooth muscle of rat vas deferens revealed by procaine.
    Khoyi MA; Dalziel HH; Zhang L; Bjur RA; Gerthoffer WT; Buxton IL; Westfall DP
    Br J Pharmacol; 1993 Dec; 110(4):1353-8. PubMed ID: 8306075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.