BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16621080)

  • 1. In situ detoxification and continuous cultivation of dilute-acid hydrolyzate to ethanol by encapsulated S. cerevisiae.
    Talebnia F; Taherzadeh MJ
    J Biotechnol; 2006 Sep; 125(3):377-84. PubMed ID: 16621080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate.
    Petersson A; Lidén G
    Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus.
    Sues A; Millati R; Edebo L; Taherzadeh MJ
    FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fed-batch cultivation of Mucor indicus in dilute-acid lignocellulosic hydrolyzate for ethanol production.
    Karimi K; Brandberg T; Edebo L; Taherzadeh MJ
    Biotechnol Lett; 2005 Sep; 27(18):1395-400. PubMed ID: 16215856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae.
    Talebnia F; Niklasson C; Taherzadeh MJ
    Biotechnol Bioeng; 2005 May; 90(3):345-53. PubMed ID: 15772948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fermentation of lignocellulosic hydrolyzate using a submerged membrane bioreactor at high dilution rates.
    Ylitervo P; Doyen W; Taherzadeh MJ
    Bioresour Technol; 2014 Jul; 164():64-9. PubMed ID: 24836707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The performance of serial bioreactors in rapid continuous production of ethanol from dilute-acid hydrolyzates using immobilized cells.
    Purwadi R; Taherzadeh MJ
    Bioresour Technol; 2008 May; 99(7):2226-33. PubMed ID: 17596937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation.
    Brandberg T; Sanandaji N; Gustafsson L; Franzén CJ
    Biotechnol Prog; 2005; 21(4):1093-101. PubMed ID: 16080688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition.
    Lennartsson PR; Karimi K; Edebo L; Taherzadeh MJ
    J Biotechnol; 2009 Sep; 143(4):255-61. PubMed ID: 19631243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Continuous ethanol fermentation using self-flocculating yeast strain and bioreactor system composed of multi-stage tanks in series].
    Xu TJ; Zhao XQ; Zhou YC; Bai FW
    Sheng Wu Gong Cheng Xue Bao; 2005 Jan; 21(1):113-7. PubMed ID: 15859339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous fermentation of wheat-supplemented lignocellulose hydrolysate with different types of cell retention.
    Brandberg T; Karimi K; Taherzadeh MJ; Franzén CJ; Gustafsson L
    Biotechnol Bioeng; 2007 Sep; 98(1):80-90. PubMed ID: 17335066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol.
    Nilsson A; Taherzadeh MJ; Lidén G
    J Biotechnol; 2001 Jul; 89(1):41-53. PubMed ID: 11472798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae.
    Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae.
    Yu Z; Zhang H
    Bioresour Technol; 2004 Jun; 93(2):199-204. PubMed ID: 15051082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol fermentation of crude acid hydrolyzate of cellulose using high-level yeast inocula.
    Chung IS; Lee YY
    Biotechnol Bioeng; 1985 Mar; 27(3):308-15. PubMed ID: 18553674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains.
    Liu ZL; Slininger PJ; Gorsich SW
    Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production.
    Yu Y; Feng Y; Xu C; Liu J; Li D
    Bioresour Technol; 2011 Apr; 102(8):5123-8. PubMed ID: 21334878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.