These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 16621274)

  • 41. Surfactant-enhanced oxidation of trichloroethylene by permanganate--proof of concept.
    Li Z
    Chemosphere; 2004 Jan; 54(3):419-23. PubMed ID: 14575755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
    Haest PJ; Springael D; Smolders E
    Water Res; 2010 Jan; 44(1):331-9. PubMed ID: 19818985
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.
    Chee GJ
    Talanta; 2011 Sep; 85(4):1778-82. PubMed ID: 21872018
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Highly organic natural media as permeable reactive barriers: TCE partitioning and anaerobic degradation profile in eucalyptus mulch and compost.
    Öztürk Z; Tansel B; Katsenovich Y; Sukop M; Laha S
    Chemosphere; 2012 Oct; 89(6):665-71. PubMed ID: 22795070
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrate inhibition kinetics for toluene and benzene degrading pure cultures and a method for collection and analysis of respirometric data for strongly inhibited cultures.
    Alagappan G; Cowan R
    Biotechnol Bioeng; 2003 Sep; 83(7):798-809. PubMed ID: 12889020
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Benzene and toluene biodegradation down gradient of a zero-valent iron permeable reactive barrier.
    Chen L; Liu F; Liu Y; Dong H; Colberg PJ
    J Hazard Mater; 2011 Apr; 188(1-3):110-5. PubMed ID: 21316847
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bayesian estimation and sensitivity analysis of toluene and trichloroethylene biodegradation kinetic parameters.
    Yu F; Munoz B; Bienkowski PR; Sayler GS
    J Environ Qual; 2020 May; 49(3):640-653. PubMed ID: 33016407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soils.
    Katsenovich YP; Miralles-Wilhelm FR
    Sci Total Environ; 2009 Sep; 407(18):4986-93. PubMed ID: 19570566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [The biodegradation of trichloroethylene by a methanotrophic bacterium].
    Shen R; Li S
    Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):63-9. PubMed ID: 12549391
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sonolysis of trichloroethylene and carbon tetrachloride in aqueous solution.
    Lee M; Oh J
    Ultrason Sonochem; 2010 Jan; 17(1):207-12. PubMed ID: 19635677
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.
    Wang S; Yang Q; Bai Z; Wang S; Wang Y; Nowak KM
    Environ Technol; 2015; 36(1-4):115-23. PubMed ID: 25409590
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A gas-liquid system for enzyme kinetic studies of volatile organic chemicals. Determination of enzyme kinetic constants and partition coefficients of trichloroethylene.
    Hwang IY; Reardon KF; Tessari JD; Yang RS
    Drug Metab Dispos; 1996 Apr; 24(4):377-82. PubMed ID: 8801050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A field evaluation of in situ biodegradation of trichloroethylene through methane injection.
    Eguchi M; Kitagawa M; Suzuki Y; Nakamuara M; Kawai T; Okamura K; Sasaki S; Miyake Y
    Water Res; 2001 Jun; 35(9):2145-52. PubMed ID: 11358293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor.
    Ohlen K; Chang YK; Hegemann W; Yin CR; Lee ST
    Chemosphere; 2005 Jan; 58(3):373-7. PubMed ID: 15581940
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activity and stability of a recombinant plasmid-borne TCE degradative pathway in suspended cultures.
    Sharp RR; Bryers JD; Jones WG; Shields MS
    Biotechnol Bioeng; 1998 Feb; 57(3):287-96. PubMed ID: 10099205
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cytotoxicity associated with trichloroethylene oxidation in Burkholderia cepacia G4.
    Yeager CM; Bottomley PJ; Arp DJ
    Appl Environ Microbiol; 2001 May; 67(5):2107-15. PubMed ID: 11319088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1.
    Liu JB; Amemiya T; Chang Q; Xu X; Itoh K
    J Environ Sci Health B; 2011; 46(4):294-300. PubMed ID: 21500075
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance.
    Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.