These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 16621279)

  • 1. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.
    Cao J; Zhang WX
    J Hazard Mater; 2006 May; 132(2-3):213-9. PubMed ID: 16621279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization of Cr(VI) from chromite ore processing residue through acid treatment.
    Tinjum JM; Benson CH; Edil TB
    Sci Total Environ; 2008 Feb; 391(1):13-25. PubMed ID: 18067949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J; Lu J; Wu Q; Jing C
    J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The implications of integrated assessment and modelling studies for the future remediation of chromite ore processing residue disposal sites.
    Farmer JG; Paterson E; Bewley RJ; Geelhoed JS; Hillier S; Meeussen JC; Lumsdon DG; Thomas RP; Graham MC
    Sci Total Environ; 2006 May; 360(1-3):90-7. PubMed ID: 16203026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue.
    Graham MC; Farmer JG; Anderson P; Paterson E; Hillier S; Lumsdon DG; Bewley RJ
    Sci Total Environ; 2006 Jul; 364(1-3):32-44. PubMed ID: 16442591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cr(VI) reduction in wastewater using a bimetallic galvanic reactor.
    Lugo-Lugo V; Barrera-Díaz C; Bilyeu B; Balderas-Hernández P; Ureña-Nuñez F; Sánchez-Mendieta V
    J Hazard Mater; 2010 Apr; 176(1-3):418-25. PubMed ID: 20031318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of hexavalent chromium reduction by scrap iron.
    Gheju M; Iovi A
    J Hazard Mater; 2006 Jul; 135(1-3):66-73. PubMed ID: 16386842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.
    Jagupilla SC; Moon DH; Wazne M; Christodoulatos C; Kim MG
    J Hazard Mater; 2009 Aug; 168(1):121-8. PubMed ID: 19272700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of chromite ore processing residue by pyrolysis process with sewage sludge.
    Zhang D; Kong H; Wu D; He S; Hu Z; Hu X
    Bioresour Technol; 2009 Jun; 100(11):2874-7. PubMed ID: 19217773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of amorphous silica and silica sand on removal of chromium(VI) by zero-valent iron.
    Oh YJ; Song H; Shin WS; Choi SJ; Kim YH
    Chemosphere; 2007 Jan; 66(5):858-65. PubMed ID: 16872667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of waste iron metal for removal of Cr(VI) from water.
    Lee T; Lim H; Lee Y; Park JW
    Chemosphere; 2003 Nov; 53(5):479-85. PubMed ID: 12948531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term treatment issues with chromite ore processing residue (COPR): Cr(6+) reduction and heave.
    Moon DH; Wazne M; Dermatas D; Christodoulatos C; Sanchez AM; Grubb DG; Chrysochoou M; Kim MG
    J Hazard Mater; 2007 May; 143(3):629-35. PubMed ID: 17275184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Leaching mechanisms of Cr(VI) from chromite ore processing residue.
    Wazne M; Jagupilla SC; Moon DH; Christodoulatos C; Koutsospyros A
    J Environ Qual; 2008; 37(6):2125-34. PubMed ID: 18948466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles.
    Xu Y; Zhao D
    Water Res; 2007 May; 41(10):2101-8. PubMed ID: 17412389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using human sweat to extract chromium from chromite ore processing residue: applications to setting health-based cleanup levels.
    Horowitz SB; Finley BL
    J Toxicol Environ Health; 1993 Dec; 40(4):585-99. PubMed ID: 8277520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue.
    Chrysochoou M; Dermatas D
    J Hazard Mater; 2007 Mar; 141(2):370-7. PubMed ID: 16842911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of Cr(VI) by nanoscale zero-valent iron (nZVI) from soil contaminated with tannery wastes.
    Singh R; Misra V; Singh RP
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):210-4. PubMed ID: 21996721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Cr(VI) from Cr-contaminated groundwater through electrochemical addition of Fe(II).
    Mukhopadhyay B; Sundquist J; Schmitz RJ
    J Environ Manage; 2007 Jan; 82(1):66-76. PubMed ID: 16545518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.