These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 1662133)
1. Direct electrochemistry of proteins. Investigations of yeast cytochrome c mutants and their complexes with cytochrome b5. Burrows AL; Guo LH; Hill HA; McLendon G; Sherman F Eur J Biochem; 1991 Dec; 202(2):543-9. PubMed ID: 1662133 [TBL] [Abstract][Full Text] [Related]
2. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5. Qian W; Sun YL; Wang YH; Zhuang JH; Xie Y; Huang ZX Biochemistry; 1998 Oct; 37(40):14137-50. PubMed ID: 9760250 [TBL] [Abstract][Full Text] [Related]
3. The role of the internal hydrogen bond network in first-order protein electron transfer between Saccharomyces cerevisiae iso-1-cytochrome c and bovine microsomal cytochrome b5. Whitford D; Gao Y; Pielak GJ; Williams RJ; McLendon GL; Sherman F Eur J Biochem; 1991 Sep; 200(2):359-67. PubMed ID: 1653702 [TBL] [Abstract][Full Text] [Related]
4. Intracomplex electron transfer between ruthenium-65-cytochrome b5 and position-82 variants of yeast iso-1-cytochrome c. Willie A; McLean M; Liu RQ; Hilgen-Willis S; Saunders AJ; Pielak GJ; Sligar SG; Durham B; Millett F Biochemistry; 1993 Jul; 32(29):7519-25. PubMed ID: 8393343 [TBL] [Abstract][Full Text] [Related]
5. Direct electrochemistry of protein-protein complexes involving cytochrome c, cytochrome b5, and plastocyanin. Bagby S; Barker PD; Guo LH; Hill HA Biochemistry; 1990 Apr; 29(13):3213-9. PubMed ID: 2159330 [TBL] [Abstract][Full Text] [Related]
6. Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5. Altuve A; Silchenko S; Lee KH; Kuczera K; Terzyan S; Zhang X; Benson DR; Rivera M Biochemistry; 2001 Aug; 40(32):9469-83. PubMed ID: 11583146 [TBL] [Abstract][Full Text] [Related]
7. Direct voltammetric observation of redox driven changes in axial coordination and intramolecular rearrangement of the phenylalanine-82-histidine variant of yeast iso-1-cytochrome c. Feinberg BA; Liu X; Ryan MD; Schejter A; Zhang C; Margoliash E Biochemistry; 1998 Sep; 37(38):13091-101. PubMed ID: 9748315 [TBL] [Abstract][Full Text] [Related]
8. Cation-promoted cyclic voltammetry of recombinant rat outer mitochondrial membrane cytochrome b5 at a gold electrode modified with beta-mercaptopropionic acid. Rivera M; Wells MA; Walker FA Biochemistry; 1994 Mar; 33(8):2161-70. PubMed ID: 8117672 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical measurement of second-order electron transfer rate constants for the reaction between cytochrome b5 and cytochrome c. Seetharaman R; White SP; Rivera M Biochemistry; 1996 Sep; 35(38):12455-63. PubMed ID: 8823180 [TBL] [Abstract][Full Text] [Related]
10. Tandem mass spectrometry of protein-protein complexes: cytochrome c-cytochrome b5. Mauk MR; Mauk AG; Chen YL; Douglas DJ J Am Soc Mass Spectrom; 2002 Jan; 13(1):59-71. PubMed ID: 11777200 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical analysis of the interaction between cytochrome c and cytochrome b5. Mauk AG; Mauk MR; Moore GR; Northrup SH J Bioenerg Biomembr; 1995 Jun; 27(3):311-30. PubMed ID: 8847345 [TBL] [Abstract][Full Text] [Related]
12. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions. Sun MH; Liu SQ; Du KJ; Nie CM; Lin YW Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 118():130-7. PubMed ID: 24051281 [TBL] [Abstract][Full Text] [Related]
13. Structure, interaction and electron transfer between cytochrome b5, its E44A and/or E56A mutants and cytochrome c. Sun YL; Wang YH; Yan MM; Sun BY; Xie Y; Huang ZX; Jiang SK; Wu HM J Mol Biol; 1999 Jan; 285(1):347-59. PubMed ID: 9878411 [TBL] [Abstract][Full Text] [Related]
14. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of yeast iso-1-ferricytochrome c by bovine ferrocytochrome b5. Northrup SH; Thomasson KA; Miller CM; Barker PD; Eltis LD; Guillemette JG; Inglis SC; Mauk AG Biochemistry; 1993 Jul; 32(26):6613-23. PubMed ID: 8392365 [TBL] [Abstract][Full Text] [Related]
15. Proton linkage of complex formation between cytochrome c and cytochrome b5: electrostatic consequences of protein-protein interactions. Mauk MR; Barker PD; Mauk AG Biochemistry; 1991 Oct; 30(41):9873-81. PubMed ID: 1655024 [TBL] [Abstract][Full Text] [Related]
16. Genetic engineering of redox donor sites: measurement of intracomplex electron transfer between ruthenium-65-cytochrome b5 and cytochrome c. Willie A; Stayton PS; Sligar SG; Durham B; Millett F Biochemistry; 1992 Aug; 31(32):7237-42. PubMed ID: 1324708 [TBL] [Abstract][Full Text] [Related]
17. Direct electrochemical analyses of human cytochromes b5 with a mutated heme pocket showed a good correlation between their midpoint and half wave potentials. Aono T; Sakamoto Y; Miura M; Takeuchi F; Hori H; Tsubaki M J Biomed Sci; 2010 Dec; 17(1):90. PubMed ID: 21129218 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic characterization of the interaction between cytochrome b5 and cytochrome c. McLean MA; Sligar SG Biochem Biophys Res Commun; 1995 Oct; 215(1):316-20. PubMed ID: 7575608 [TBL] [Abstract][Full Text] [Related]