These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16621360)
1. In vitro and in vivo characterization of nanoparticles made of MeO-PEG amine/PLA block copolymer and PLA. Sasatsu M; Onishi H; Machida Y Int J Pharm; 2006 Jul; 317(2):167-74. PubMed ID: 16621360 [TBL] [Abstract][Full Text] [Related]
2. Preparation and biodisposition of methoxypolyethylene glycol amine-poly(DL-lactic acid) copolymer nanoparticles loaded with pyrene-ended poly(DL-lactic acid). Sasatsu M; Onishi H; Machida Y Int J Pharm; 2008 Jun; 358(1-2):271-7. PubMed ID: 18448290 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a PLA-PEG block copolymer using a PLA derivative with a formyl terminal group and its application to nanoparticulate formulation. Sasatsu M; Onishi H; Machida Y Int J Pharm; 2005 Apr; 294(1-2):233-45. PubMed ID: 15814247 [TBL] [Abstract][Full Text] [Related]
4. Improved antifungal activity of itraconazole-loaded PEG/PLA nanoparticles. Essa S; Louhichi F; Raymond M; Hildgen P J Microencapsul; 2013; 30(3):205-17. PubMed ID: 22894166 [TBL] [Abstract][Full Text] [Related]
5. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
6. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Essa S; Rabanel JM; Hildgen P Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551 [TBL] [Abstract][Full Text] [Related]
7. Intranasal delivery of zidovudine by PLA and PLA-PEG blend nanoparticles. Mainardes RM; Khalil NM; GremiĆ£o MP Int J Pharm; 2010 Aug; 395(1-2):266-71. PubMed ID: 20580792 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization, and in vitro evaluation of docetaxel-loaded poly(lactic acid)-poly(ethylene glycol) nanoparticles for parenteral drug delivery. Liu D; Wang L; Liu Z; Zhang C; Zhang N J Biomed Nanotechnol; 2010 Dec; 6(6):675-82. PubMed ID: 21361132 [TBL] [Abstract][Full Text] [Related]
9. Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin. Kunii R; Onishi H; Machida Y Eur J Pharm Biopharm; 2007 Aug; 67(1):9-17. PubMed ID: 17337172 [TBL] [Abstract][Full Text] [Related]
10. Development and characterization of CyA-loaded poly(lactic acid)-poly(ethylene glycol)PEG micro- and nanoparticles. Comparison with conventional PLA particulate carriers. Gref R; Quellec P; Sanchez A; Calvo P; Dellacherie E; Alonso MJ Eur J Pharm Biopharm; 2001 Mar; 51(2):111-8. PubMed ID: 11226817 [TBL] [Abstract][Full Text] [Related]
11. Particle characteristics and biodistribution of camptothecin-loaded PLA/(PEG-PPG-PEG) nanoparticles. Kunii R; Onishi H; Ueki K; Koyama K; Machida Y Drug Deliv; 2008 Jan; 15(1):3-10. PubMed ID: 18197517 [TBL] [Abstract][Full Text] [Related]
12. In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. Sheng Y; Yuan Y; Liu C; Tao X; Shan X; Xu F J Mater Sci Mater Med; 2009 Sep; 20(9):1881-91. PubMed ID: 19365612 [TBL] [Abstract][Full Text] [Related]
13. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles. Sant S; Poulin S; Hildgen P J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and characterization of MeO-PEG-PLGA-PEG-OMe copolymers as drug carriers and their degradation behavior in vitro. Duan Y; Zhang Y; Gong T; Zhang Z J Mater Sci Mater Med; 2007 Oct; 18(10):2067-73. PubMed ID: 17558481 [TBL] [Abstract][Full Text] [Related]
15. Polymeric nanoparticles encapsulating betamethasone phosphate with different release profiles and stealthiness. Ishihara T; Kubota T; Choi T; Takahashi M; Ayano E; Kanazawa H; Higaki M Int J Pharm; 2009 Jun; 375(1-2):148-54. PubMed ID: 19481700 [TBL] [Abstract][Full Text] [Related]
16. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers. Zhu J; Zhou Z; Yang C; Kong D; Wan Y; Wang Z J Biomed Mater Res A; 2011 Jun; 97(4):498-508. PubMed ID: 21509931 [TBL] [Abstract][Full Text] [Related]
17. [Characterization of Me. PEG-PLA copolymer nanoparticles prepared by modified spontaneous emulsion-solvent evaporation]. Dong J; Liu MX; Yang YJ; Xu HB; Yang XL Yao Xue Xue Bao; 2004 Sep; 39(9):677-80. PubMed ID: 15606012 [TBL] [Abstract][Full Text] [Related]
18. Polyaspartamide-Polylactide Graft Copolymers with Tunable Properties for the Realization of Fluorescent Nanoparticles for Imaging. Craparo EF; Porsio B; Mauro N; Giammona G; Cavallaro G Macromol Rapid Commun; 2015 Aug; 36(15):1409-15. PubMed ID: 26010226 [TBL] [Abstract][Full Text] [Related]
19. Transferrin modified PEG-PLA-resveratrol conjugates: in vitro and in vivo studies for glioma. Guo W; Li A; Jia Z; Yuan Y; Dai H; Li H Eur J Pharmacol; 2013 Oct; 718(1-3):41-7. PubMed ID: 24070814 [TBL] [Abstract][Full Text] [Related]
20. Pluronic P85/poly(lactic acid) vesicles as novel carrier for oral insulin delivery. Xiong XY; Li QH; Li YP; Guo L; Li ZL; Gong YC Colloids Surf B Biointerfaces; 2013 Nov; 111():282-8. PubMed ID: 23838194 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]