BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16621527)

  • 1. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content.
    Cammarota MC; Freire DM
    Bioresour Technol; 2006 Nov; 97(17):2195-210. PubMed ID: 16621527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different pre-hydrolysis times and enzyme pool concentrations on the biodegradability of poultry slaughterhouse wastewater with a high fat content.
    Valladão AB; Sartore PE; Freire DM; Cammarota MC
    Water Sci Technol; 2009; 60(1):243-9. PubMed ID: 19587421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced treatment of waste frying oil in an activated sludge system by addition of crude rhamnolipid solution.
    Zhang H; Xiang H; Zhang G; Cao X; Meng Q
    J Hazard Mater; 2009 Aug; 167(1-3):217-23. PubMed ID: 19185998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation.
    Jeganathan J; Bassi A; Nakhla G
    J Hazard Mater; 2006 Sep; 137(1):121-8. PubMed ID: 16504384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic modeling of aerobic biodegradation of high oil and grease rendering wastewater.
    Nakhla G; Liu V; Bassi A
    Bioresour Technol; 2006 Jan; 97(1):131-9. PubMed ID: 16154510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Symbiotic effects of a lipase-secreting bacterium, Burkholderia arboris SL1B1, and a glycerol-assimilating yeast, Candida cylindracea SL1B2, on triacylglycerol degradation.
    Matsuoka H; Miura A; Hori K
    J Biosci Bioeng; 2009 Apr; 107(4):401-8. PubMed ID: 19332299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profiles of fatty acids and triacylglycerols and their influence on the anaerobic biodegradability of effluents from poultry slaughterhouse.
    Valladão AB; Torres AG; Freire DM; Cammarota MC
    Bioresour Technol; 2011 Jul; 102(14):7043-50. PubMed ID: 21576016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance and molecular evaluation of an anaerobic system with suspended biomass for treating wastewater with high fat content after enzymatic hydrolysis.
    Rosa DR; Duarte IC; Saavedra NK; Varesche MB; Zaiat M; Cammarota MC; Freire DM
    Bioresour Technol; 2009 Dec; 100(24):6170-6. PubMed ID: 19656674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of a commercial inoculum for the aerobic biodegradation of a high fat content dairy wastewater.
    Loperena L; Ferrari MD; Saravia V; Murro D; Lima C; Ferrando L; Fernández A; Lareo C
    Bioresour Technol; 2007 Mar; 98(5):1045-51. PubMed ID: 16790344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrolytic pretreatment of oily wastewater by immobilized lipase.
    Jeganathan J; Nakhla G; Bassi A
    J Hazard Mater; 2007 Jun; 145(1-2):127-35. PubMed ID: 17166661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon source recovery from waste activated sludge by alkaline hydrolysis and gamma-ray irradiation for biological denitrification.
    Kim TH; Nam YK; Park C; Lee M
    Bioresour Technol; 2009 Dec; 100(23):5694-9. PubMed ID: 19596570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decontamination industrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment.
    Sirtori C; Zapata A; Oller I; Gernjak W; Agüera A; Malato S
    Water Res; 2009 Feb; 43(3):661-8. PubMed ID: 19046757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of nitrogen and phosphorus from alkaline fermentation liquid of waste activated sludge and application of the fermentation liquid to promote biological municipal wastewater treatment.
    Tong J; Chen Y
    Water Res; 2009 Jul; 43(12):2969-76. PubMed ID: 19443007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation of agro-food wastewaters by activated sludge.
    de Lucas A; Rodríguez L; Villaseñor J; Fernández FJ
    Water Res; 2007 Apr; 41(8):1635-44. PubMed ID: 17350075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of trace organic compounds found in precious metals refineries' wastewaters: a review of potential options.
    Barbosa VL; Tandlich R; Burgess JE
    Chemosphere; 2007 Jul; 68(7):1195-203. PubMed ID: 17316749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment.
    Sangave PC; Gogate PR; Pandit AB
    Chemosphere; 2007 May; 68(1):32-41. PubMed ID: 17280704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater.
    Zang S; Lian B
    J Hazard Mater; 2009 Jul; 166(1):33-8. PubMed ID: 19070430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater.
    Fan JH; Ma LM
    J Hazard Mater; 2009 May; 164(2-3):1392-7. PubMed ID: 19019539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oily wastewater treatment using a novel hybrid PBR-UASB system.
    Jeganathan J; Nakhla G; Bassi A
    Chemosphere; 2007 Apr; 67(8):1492-501. PubMed ID: 17276486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fats, oils, and greases: the minimization and treatment of wastewaters generated from oil refining and margarine production.
    Willey R
    Ecotoxicol Environ Saf; 2001 Oct; 50(2):127-33. PubMed ID: 11689028
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.