These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16621600)

  • 21. [Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins].
    Kedzierska S
    Postepy Biochem; 2006; 52(3):330-8. PubMed ID: 17201069
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Arginine Finger Regulates the Sequential Action of Asymmetrical Hexameric ATPase in the Double-Stranded DNA Translocation Motor.
    Zhao Z; De-Donatis GM; Schwartz C; Fang H; Li J; Guo P
    Mol Cell Biol; 2016 Oct; 36(19):2514-23. PubMed ID: 27457616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and functional motifs of the recombinant ATPase of orf virus.
    Lin FY; Chan KW; Wang CY; Wong ML; Hsu WL
    Protein Expr Purif; 2011 Oct; 79(2):210-6. PubMed ID: 21540113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Positive cooperativity of the p97 AAA ATPase is critical for essential functions.
    Nishikori S; Esaki M; Yamanaka K; Sugimoto S; Ogura T
    J Biol Chem; 2011 May; 286(18):15815-20. PubMed ID: 21454554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutation of a key residue in the type II secretion system ATPase uncouples ATP hydrolysis from protein translocation.
    Shiue SJ; Chien IL; Chan NL; Leu WM; Hu NT
    Mol Microbiol; 2007 Jul; 65(2):401-12. PubMed ID: 17630971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase.
    Schumacher J; Joly N; Claeys-Bouuaert IL; Aziz SA; Rappas M; Zhang X; Buck M
    J Mol Biol; 2008 Aug; 381(1):1-12. PubMed ID: 18599077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli.
    Bramkamp M; Altendorf K
    Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the mechanism of ATP hydrolysis and substrate translocation in the AAA protease FtsH by modelling and mutagenesis.
    Karata K; Verma CS; Wilkinson AJ; Ogura T
    Mol Microbiol; 2001 Feb; 39(4):890-903. PubMed ID: 11251810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP.
    Okkeri J; Laakkonen L; Haltia T
    Biochem J; 2004 Jan; 377(Pt 1):95-105. PubMed ID: 14510639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing heterogeneity in oligomeric AAA+ machines.
    Sysoeva TA
    Cell Mol Life Sci; 2017 Mar; 74(6):1001-1018. PubMed ID: 27669691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conserved aromatic and basic amino acid residues in the pore region of Caenorhabditis elegans spastin play critical roles in microtubule severing.
    Matsushita-Ishiodori Y; Yamanaka K; Hashimoto H; Esaki M; Ogura T
    Genes Cells; 2009 Aug; 14(8):925-40. PubMed ID: 19619244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
    Marquenet E; Richet E
    J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of the insertion domain and the zinc-finger motif of Escherichia coli UvrA in damage recognition and ATP hydrolysis.
    Wagner K; Moolenaar GF; Goosen N
    DNA Repair (Amst); 2011 May; 10(5):483-96. PubMed ID: 21393072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable incorporation of ATPase subunits into 19 S regulatory particle of human proteasome requires nucleotide binding and C-terminal tails.
    Lee SH; Moon JH; Yoon SK; Yoon JB
    J Biol Chem; 2012 Mar; 287(12):9269-79. PubMed ID: 22275368
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The arginine finger of the Bloom syndrome protein: its structural organization and its role in energy coupling.
    Ren H; Dou SX; Rigolet P; Yang Y; Wang PY; Amor-Gueret M; Xi XG
    Nucleic Acids Res; 2007; 35(18):6029-41. PubMed ID: 17766252
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858).
    Unciuleac MC; Smith PC; Shuman S
    J Bacteriol; 2016 May; 198(10):1521-33. PubMed ID: 26953339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of the hexameric replicative helicase RepA of plasmid RSF1010.
    Niedenzu T; Röleke D; Bains G; Scherzinger E; Saenger W
    J Mol Biol; 2001 Feb; 306(3):479-87. PubMed ID: 11178907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI.
    Corbett KD; Berger JM
    Structure; 2005 Jun; 13(6):873-82. PubMed ID: 15939019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle.
    Weikl T; Muschler P; Richter K; Veit T; Reinstein J; Buchner J
    J Mol Biol; 2000 Nov; 303(4):583-92. PubMed ID: 11054293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.