BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16621803)

  • 1. Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase.
    Hu G; Lin AP; McAlister-Henn L
    J Biol Chem; 2006 Jun; 281(25):16935-16942. PubMed ID: 16621803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple cellular consequences of isocitrate dehydrogenase isozyme dysfunction.
    McCammon MT; McAlister-Henn L
    Arch Biochem Biophys; 2003 Nov; 419(2):222-33. PubMed ID: 14592466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase.
    Lin AP; McCammon MT; McAlister-Henn L
    Biochemistry; 2001 Nov; 40(47):14291-301. PubMed ID: 11714283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of higher plant NAD-dependent isocitrate dehydrogenase: evidence for a heteromeric structure by the complementation of yeast mutants.
    Lancien M; Gadal P; Hodges M
    Plant J; 1998 Nov; 16(3):325-33. PubMed ID: 9881153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of interactions with mitochondrial mRNA using mutant forms of yeast NAD(+)-specific isocitrate dehydrogenase.
    Anderson SL; Lin AP; McAlister-Henn L
    Biochemistry; 2005 Dec; 44(50):16776-84. PubMed ID: 16342968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function and expression of yeast mitochondrial NAD- and NADP-specific isocitrate dehydrogenases.
    Haselbeck RJ; McAlister-Henn L
    J Biol Chem; 1993 Jun; 268(16):12116-22. PubMed ID: 8099357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase.
    Taylor AB; Hu G; Hart PJ; McAlister-Henn L
    J Biol Chem; 2008 Apr; 283(16):10872-80. PubMed ID: 18256028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic properties and metabolic contributions of yeast mitochondrial and cytosolic NADP+-specific isocitrate dehydrogenases.
    Contreras-Shannon V; Lin AP; McCammon MT; McAlister-Henn L
    J Biol Chem; 2005 Feb; 280(6):4469-75. PubMed ID: 15574419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding and structural changes associated with allostery in yeast NAD(+)-specific isocitrate dehydrogenase.
    McAlister-Henn L
    Arch Biochem Biophys; 2012 Mar; 519(2):112-7. PubMed ID: 22008468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous binding sites in yeast isocitrate dehydrogenase for cofactor (NAD+) and allosteric activator (AMP).
    Lin AP; McAlister-Henn L
    J Biol Chem; 2003 Apr; 278(15):12864-72. PubMed ID: 12562755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disulfide bond formation in yeast NAD+-specific isocitrate dehydrogenase.
    Garcia JA; Minard KI; Lin AP; McAlister-Henn L
    Biochemistry; 2009 Sep; 48(37):8869-78. PubMed ID: 19645416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a Histoplasma capsulatum cDNA that complements a mitochondrial NAD(+)-isocitrate dehydrogenase subunit I-deficient mutant of Saccharomyces cerevisiae.
    Johnson CH; McEwen JE
    Yeast; 1999 Jun; 15(9):799-804. PubMed ID: 10398348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric inhibition of NAD+-specific isocitrate dehydrogenase by a mitochondrial mRNA.
    Anderson SL; Minard KI; McAlister-Henn L
    Biochemistry; 2000 May; 39(19):5623-9. PubMed ID: 10801312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and analyses of tetrameric forms of yeast NAD+-specific isocitrate dehydrogenase.
    Lin AP; Demeler B; Minard KI; Anderson SL; Schirf V; Galaleldeen A; McAlister-Henn L
    Biochemistry; 2011 Jan; 50(2):230-9. PubMed ID: 21133413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of isocitrate dehydrogenase from the green sulfur bacterium Chlorobium limicola. A carbon dioxide-fixing enzyme in the reductive tricarboxylic acid cycle.
    Kanao T; Kawamura M; Fukui T; Atomi H; Imanaka T
    Eur J Biochem; 2002 Apr; 269(7):1926-31. PubMed ID: 11952794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redox responses in yeast to acetate as the carbon source.
    Minard KI; McAlister-Henn L
    Arch Biochem Biophys; 2009 Mar; 483(1):136-43. PubMed ID: 19138656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis.
    Cupp JR; McAlister-Henn L
    Biochemistry; 1993 Sep; 32(36):9323-8. PubMed ID: 8369302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit structure, expression, and function of NAD(H)-specific isocitrate dehydrogenase in Saccharomyces cerevisiae.
    Keys DA; McAlister-Henn L
    J Bacteriol; 1990 Aug; 172(8):4280-7. PubMed ID: 2198251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Type II NAD+-Specific Isocitrate Dehydrogenase from the Marine Bacterium Congregibacter litoralis KT71.
    Wu MC; Tian CQ; Cheng HM; Xu L; Wang P; Zhu GP
    PLoS One; 2015; 10(5):e0125229. PubMed ID: 25942017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization and preliminary X-ray crystallographic analysis of yeast NAD+-specific isocitrate dehydrogenase.
    Hu G; Taylor AB; McAlister-Henn L; Hart PJ
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 May; 61(Pt 5):486-8. PubMed ID: 16511075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.