These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 16622054)
1. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD. Hinsa SM; O'Toole GA Microbiology (Reading); 2006 May; 152(Pt 5):1375-1383. PubMed ID: 16622054 [TBL] [Abstract][Full Text] [Related]
2. MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens. Collins AJ; Pastora AB; Smith TJ; O'Toole GA J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32631946 [TBL] [Abstract][Full Text] [Related]
3. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. Newell PD; Boyd CD; Sondermann H; O'Toole GA PLoS Biol; 2011 Feb; 9(2):e1000587. PubMed ID: 21304920 [TBL] [Abstract][Full Text] [Related]
4. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Hinsa SM; Espinosa-Urgel M; Ramos JL; O'Toole GA Mol Microbiol; 2003 Aug; 49(4):905-18. PubMed ID: 12890017 [TBL] [Abstract][Full Text] [Related]
5. The regulator FleQ both transcriptionally and post-transcriptionally regulates the level of RTX adhesins of Pastora AB; O'Toole GA J Bacteriol; 2023 Sep; 205(9):e0015223. PubMed ID: 37655913 [TBL] [Abstract][Full Text] [Related]
6. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit. Collins AJ; Smith TJ; Sondermann H; O'Toole GA Annu Rev Microbiol; 2020 Sep; 74():607-631. PubMed ID: 32689917 [TBL] [Abstract][Full Text] [Related]
7. An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems. Smith TJ; Font ME; Kelly CM; Sondermann H; O'Toole GA J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29437852 [TBL] [Abstract][Full Text] [Related]
8. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization. Boyd CD; Smith TJ; El-Kirat-Chatel S; Newell PD; Dufrêne YF; O'Toole GA J Bacteriol; 2014 Aug; 196(15):2775-88. PubMed ID: 24837291 [TBL] [Abstract][Full Text] [Related]
9. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens. Ivanov IE; Boyd CD; Newell PD; Schwartz ME; Turnbull L; Johnson MS; Whitchurch CB; O'Toole GA; Camesano TA Res Microbiol; 2012; 163(9-10):685-91. PubMed ID: 23064158 [TBL] [Abstract][Full Text] [Related]
10. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1. Newell PD; Monds RD; O'Toole GA Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3461-6. PubMed ID: 19218451 [TBL] [Abstract][Full Text] [Related]
11. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. El-Kirat-Chatel S; Beaussart A; Boyd CD; O'Toole GA; Dufrêne YF ACS Chem Biol; 2014 Feb; 9(2):485-94. PubMed ID: 24556201 [TBL] [Abstract][Full Text] [Related]
12. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA. Monds RD; Newell PD; Gross RH; O'Toole GA Mol Microbiol; 2007 Feb; 63(3):656-79. PubMed ID: 17302799 [TBL] [Abstract][Full Text] [Related]
13. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease. Boyd CD; Chatterjee D; Sondermann H; O'Toole GA J Bacteriol; 2012 Aug; 194(16):4406-14. PubMed ID: 22707708 [TBL] [Abstract][Full Text] [Related]
14. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica. Ambrosis N; Boyd CD; O Toole GA; Fernández J; Sisti F PLoS One; 2016; 11(7):e0158752. PubMed ID: 27380521 [TBL] [Abstract][Full Text] [Related]
15. Reconstitution of a biofilm adhesin system from a sulfate-reducing bacterium in Karbelkar AA; Font M; Smith TJ; Sondermann H; O'Toole GA Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2320410121. PubMed ID: 38498718 [TBL] [Abstract][Full Text] [Related]
16. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. O'Toole GA; Kolter R Mol Microbiol; 1998 May; 28(3):449-61. PubMed ID: 9632250 [TBL] [Abstract][Full Text] [Related]
17. Legionella pneumophila cell surface RtxA release by LapD/LapG and its role in virulence. Kanaan H; Chapalain A; Chokr A; Doublet P; Gilbert C BMC Microbiol; 2024 Jul; 24(1):266. PubMed ID: 39026145 [TBL] [Abstract][Full Text] [Related]
18. The Regulator FleQ Post-Transcriptionally Regulates the Production of RTX Adhesins by Pastora AB; O'Toole GA bioRxiv; 2023 May; ():. PubMed ID: 37214974 [TBL] [Abstract][Full Text] [Related]
19. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways. Monds RD; Newell PD; Wagner JC; Schwartzman JA; Lu W; Rabinowitz JD; O'Toole GA J Bacteriol; 2010 Jun; 192(12):3011-23. PubMed ID: 20154123 [TBL] [Abstract][Full Text] [Related]
20. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Song B; Leff LG Microbiol Res; 2006; 161(4):355-61. PubMed ID: 16517137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]