BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16622054)

  • 1. Biofilm formation by Pseudomonas fluorescens WCS365: a role for LapD.
    Hinsa SM; O'Toole GA
    Microbiology (Reading); 2006 May; 152(Pt 5):1375-1383. PubMed ID: 16622054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MapA, a Second Large RTX Adhesin Conserved across the Pseudomonads, Contributes to Biofilm Formation by Pseudomonas fluorescens.
    Collins AJ; Pastora AB; Smith TJ; O'Toole GA
    J Bacteriol; 2020 Aug; 202(18):. PubMed ID: 32631946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage.
    Newell PD; Boyd CD; Sondermann H; O'Toole GA
    PLoS Biol; 2011 Feb; 9(2):e1000587. PubMed ID: 21304920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein.
    Hinsa SM; Espinosa-Urgel M; Ramos JL; O'Toole GA
    Mol Microbiol; 2003 Aug; 49(4):905-18. PubMed ID: 12890017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulator FleQ both transcriptionally and post-transcriptionally regulates the level of RTX adhesins of
    Pastora AB; O'Toole GA
    J Bacteriol; 2023 Sep; 205(9):e0015223. PubMed ID: 37655913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit.
    Collins AJ; Smith TJ; Sondermann H; O'Toole GA
    Annu Rev Microbiol; 2020 Sep; 74():607-631. PubMed ID: 32689917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An N-Terminal Retention Module Anchors the Giant Adhesin LapA of Pseudomonas fluorescens at the Cell Surface: a Novel Subfamily of Type I Secretion Systems.
    Smith TJ; Font ME; Kelly CM; Sondermann H; O'Toole GA
    J Bacteriol; 2018 Apr; 200(8):. PubMed ID: 29437852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural features of the Pseudomonas fluorescens biofilm adhesin LapA required for LapG-dependent cleavage, biofilm formation, and cell surface localization.
    Boyd CD; Smith TJ; El-Kirat-Chatel S; Newell PD; Dufrêne YF; O'Toole GA
    J Bacteriol; 2014 Aug; 196(15):2775-88. PubMed ID: 24837291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic force and super-resolution microscopy support a role for LapA as a cell-surface biofilm adhesin of Pseudomonas fluorescens.
    Ivanov IE; Boyd CD; Newell PD; Schwartz ME; Turnbull L; Johnson MS; Whitchurch CB; O'Toole GA; Camesano TA
    Res Microbiol; 2012; 163(9-10):685-91. PubMed ID: 23064158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LapD is a bis-(3',5')-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0-1.
    Newell PD; Monds RD; O'Toole GA
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3461-6. PubMed ID: 19218451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA.
    El-Kirat-Chatel S; Beaussart A; Boyd CD; O'Toole GA; Dufrêne YF
    ACS Chem Biol; 2014 Feb; 9(2):485-94. PubMed ID: 24556201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0-1 biofilm formation by controlling secretion of the adhesin LapA.
    Monds RD; Newell PD; Gross RH; O'Toole GA
    Mol Microbiol; 2007 Feb; 63(3):656-79. PubMed ID: 17302799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LapG, required for modulating biofilm formation by Pseudomonas fluorescens Pf0-1, is a calcium-dependent protease.
    Boyd CD; Chatterjee D; Sondermann H; O'Toole GA
    J Bacteriol; 2012 Aug; 194(16):4406-14. PubMed ID: 22707708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homologs of the LapD-LapG c-di-GMP Effector System Control Biofilm Formation by Bordetella bronchiseptica.
    Ambrosis N; Boyd CD; O Toole GA; Fernández J; Sisti F
    PLoS One; 2016; 11(7):e0158752. PubMed ID: 27380521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of a biofilm adhesin system from a sulfate-reducing bacterium in
    Karbelkar AA; Font M; Smith TJ; Sondermann H; O'Toole GA
    Proc Natl Acad Sci U S A; 2024 Mar; 121(13):e2320410121. PubMed ID: 38498718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis.
    O'Toole GA; Kolter R
    Mol Microbiol; 1998 May; 28(3):449-61. PubMed ID: 9632250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Regulator FleQ Post-Transcriptionally Regulates the Production of RTX Adhesins by
    Pastora AB; O'Toole GA
    bioRxiv; 2023 May; ():. PubMed ID: 37214974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Di-adenosine tetraphosphate (Ap4A) metabolism impacts biofilm formation by Pseudomonas fluorescens via modulation of c-di-GMP-dependent pathways.
    Monds RD; Newell PD; Wagner JC; Schwartzman JA; Lu W; Rabinowitz JD; O'Toole GA
    J Bacteriol; 2010 Jun; 192(12):3011-23. PubMed ID: 20154123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens.
    Song B; Leff LG
    Microbiol Res; 2006; 161(4):355-61. PubMed ID: 16517137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type 1 Does the Two-Step: Type 1 Secretion Substrates with a Functional Periplasmic Intermediate.
    Smith TJ; Sondermann H; O'Toole GA
    J Bacteriol; 2018 Sep; 200(18):. PubMed ID: 29866808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.