These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16622056)

  • 21. Uptake of choline from salmon flesh and its conversion to glycine betaine in response to salt stress in Shewanella putrefaciens.
    Leblanc L; Gouffi K; Leroi F; Hartke A; Blanco C; Auffray Y; Pichereau V
    Int J Food Microbiol; 2001 Apr; 65(1-2):93-103. PubMed ID: 11322705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Damped oscillations in the synthesis of carnitine dehydrogenase by Pseudomonas aeruginosa].
    Kleber HP; Aurich H
    Hoppe Seylers Z Physiol Chem; 1967 Dec; 348(12):1727-9. PubMed ID: 4967877
    [No Abstract]   [Full Text] [Related]  

  • 25. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolation and phenotypic characterization of Pseudomonas aeruginosa pseudorevertants containing suppressors of the catabolite repression control-defective crc-10 allele.
    Collier DN; Spence C; Cox MJ; Phibbs PV
    FEMS Microbiol Lett; 2001 Mar; 196(2):87-92. PubMed ID: 11267761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constitutive choline transport in Pseudomonas aeruginosa.
    Lucchesi GI; Pallotti C; Lisa AT; Domenech CE
    FEMS Microbiol Lett; 1998 May; 162(1):123-6. PubMed ID: 9595672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress.
    D'Souza-Ault MR; Smith LT; Smith GM
    Appl Environ Microbiol; 1993 Feb; 59(2):473-8. PubMed ID: 8434912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis.
    Smyth PF; Clarke PH
    J Gen Microbiol; 1975 Sep; 90(1):81-90. PubMed ID: 170365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycine betaine transmethylase mutant of Pseudomonas aeruginosa.
    Serra AL; Mariscotti JF; Barra JL; Lucchesi GI; Domenech CE; Lisa AT
    J Bacteriol; 2002 Aug; 184(15):4301-3. PubMed ID: 12107149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO.
    Wolff JA; MacGregor CH; Eisenberg RC; Phibbs PV
    J Bacteriol; 1991 Aug; 173(15):4700-6. PubMed ID: 1906870
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Acinetobacter baylyi Crc in catabolite repression of enzymes for aromatic compound catabolism.
    Zimmermann T; Sorg T; Siehler SY; Gerischer U
    J Bacteriol; 2009 Apr; 191(8):2834-42. PubMed ID: 19201803
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Repression of the malic enzyme by carnitine metabolite in Pseudomonas aeruginosa].
    Kleber HP
    Acta Biol Med Ger; 1969; 23(1):29-36. PubMed ID: 4984838
    [No Abstract]   [Full Text] [Related]  

  • 34. Proteome mapping, mass spectrometric sequencing and reverse transcription-PCR for characterization of the sulfate starvation-induced response in Pseudomonas aeruginosa PAO1.
    Quadroni M; James P; Dainese-Hatt P; Kertesz MA
    Eur J Biochem; 1999 Dec; 266(3):986-96. PubMed ID: 10583393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in
    Bruger EL; Hying ZT; Singla D; Márquez Reyes NL; Pandey SK; Patel JS; Bazurto JV
    Appl Environ Microbiol; 2024 Jul; 90(7):e0031024. PubMed ID: 38934615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Induction of acid phosphatase and cholinesterase activities in Ps. aeruginosa and their in-vitro control by choline, acetylcholine and betaine.
    Lisa TA; Garrido MN; Domenech CE
    Mol Cell Biochem; 1983; 50(2):149-55. PubMed ID: 6406829
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway.
    Cánovas D; Vargas C; Csonka LN; Ventosa A; Nieto JJ
    J Bacteriol; 1996 Dec; 178(24):7221-6. PubMed ID: 8955405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid purification and properties of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa.
    Velasco-García R; Mújica-Jiménez C; Mendoza-Hernández G; Muñoz-Clares RA
    J Bacteriol; 1999 Feb; 181(4):1292-300. PubMed ID: 9973357
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ectoine-induced proteins in Sinorhizobium meliloti include an Ectoine ABC-type transporter involved in osmoprotection and ectoine catabolism.
    Jebbar M; Sohn-Bösser L; Bremer E; Bernard T; Blanco C
    J Bacteriol; 2005 Feb; 187(4):1293-304. PubMed ID: 15687193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and characterization of ButA, a secondary glycine betaine transport system operating in Tetragenococcus halophila.
    Baliarda A; Robert H; Jebbar M; Blanco C; Le Marrec C
    Curr Microbiol; 2003 Oct; 47(4):347-51. PubMed ID: 14629018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.