BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 1662261)

  • 1. Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat.
    Paré D; Dossi RC; Steriade M
    J Neurophysiol; 1991 Oct; 66(4):1190-204. PubMed ID: 1662261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Various types of inhibitory postsynaptic potentials in anterior thalamic cells are differentially altered by stimulation of laterodorsal tegmental cholinergic nucleus.
    Curró Dossi R; Paré D; Steriade M
    Neuroscience; 1992; 47(2):279-89. PubMed ID: 1641124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single axon IPSPs elicited in pyramidal cells by three classes of interneurones in slices of rat neocortex.
    Thomson AM; West DC; Hahn J; Deuchars J
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):81-102. PubMed ID: 8910198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiology of neurons of lateral thalamic nuclei in cat: resting properties and burst discharges.
    Deschênes M; Paradis M; Roy JP; Steriade M
    J Neurophysiol; 1984 Jun; 51(6):1196-219. PubMed ID: 6737028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology and pharmacology of corticothalamic stimulation-evoked responses in rat somatosensory thalamic neurons in vitro.
    Kao CQ; Coulter DA
    J Neurophysiol; 1997 May; 77(5):2661-76. PubMed ID: 9163382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):353-63. PubMed ID: 9120576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex.
    Ando N; Izawa Y; Shinoda Y
    J Neurophysiol; 1995 Jun; 73(6):2470-85. PubMed ID: 7666153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiology of cat association cortical cells in vivo: intrinsic properties and synaptic responses.
    Nuñez A; Amzica F; Steriade M
    J Neurophysiol; 1993 Jul; 70(1):418-30. PubMed ID: 8395586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebellar-responsive neurons in the thalamic ventroanterior-ventrolateral complex of rats: in vivo electrophysiology.
    Sawyer SF; Young SJ; Groves PM; Tepper JM
    Neuroscience; 1994 Dec; 63(3):711-24. PubMed ID: 7898672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperpolarizing synaptic potentials evoked in CA1 pyramidal cells by glutamate stimulation of interneurons from the oriens/alveus border of rat hippocampal slices. I. Electrophysiological response properties.
    Samulack DD; Williams S; Lacaille JC
    Hippocampus; 1993 Jul; 3(3):331-44. PubMed ID: 8102582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of a prevalent laminar distribution of IPSPs in association cortical neurons of cat.
    Contreras D; Dürmüller N; Steriade M
    J Neurophysiol; 1997 Nov; 78(5):2742-53. PubMed ID: 9356423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Similar inhibitory processes dominate the responses of cat lateral amygdaloid projection neurons to their various afferents.
    Lang EJ; Paré D
    J Neurophysiol; 1997 Jan; 77(1):341-52. PubMed ID: 9120575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):999-1009. PubMed ID: 1684384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo.
    Contreras D; Destexhe A; Steriade M
    J Neurophysiol; 1997 Jul; 78(1):335-50. PubMed ID: 9242284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal pathways for activation of inhibitory interneurons in pyriform cortex of the rabbit.
    Satou M; Mori K; Tazawa Y; Takagi SF
    J Neurophysiol; 1983 Jul; 50(1):74-88. PubMed ID: 6875653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition evoked from primary afferents in the electrosensory lateral line lobe of the weakly electric fish (Apteronotus leptorhynchus).
    Berman NJ; Maler L
    J Neurophysiol; 1998 Dec; 80(6):3173-96. PubMed ID: 9862915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic responses of guinea pig cingulate cortical neurons in vitro.
    Higashi H; Tanaka E; Nishi S
    J Neurophysiol; 1991 Apr; 65(4):822-33. PubMed ID: 1675672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus.
    Davies CH; Davies SN; Collingridge GL
    J Physiol; 1990 May; 424():513-31. PubMed ID: 2167975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetanic stimulation induces short-term potentiation of inhibitory synaptic activity in the rostral nucleus of the solitary tract.
    Grabauskas G; Bradley RM
    J Neurophysiol; 1998 Feb; 79(2):595-604. PubMed ID: 9463424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABA(B)-receptor-mediated inhibition in developing mouse ventral posterior thalamic nucleus.
    Warren RA; Golshani P; Jones EG
    J Neurophysiol; 1997 Jul; 78(1):550-3. PubMed ID: 9242305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.