BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16622787)

  • 1. Acidophilic microbial communities catalyzing sludge bioleaching monitored by fluorescent in situ hybridization.
    Bouchez T; Jacob P; d'Hugues P; Durand A
    Antonie Van Leeuwenhoek; 2006; 89(3-4):435-42. PubMed ID: 16622787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative fluorescent in-situ hybridization: a hypothesized competition mode between two dominant bacteria groups in hydrogen-producing anaerobic sludge processes.
    Huang CL; Chen CC; Lin CY; Liu WT
    Water Sci Technol; 2009; 59(10):1901-9. PubMed ID: 19474483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discrepancies in the widely applied GAM42a fluorescence in situ hybridisation probe for Gammaproteobacteria.
    Siyambalapitiya N; Blackall LL
    FEMS Microbiol Lett; 2005 Jan; 242(2):367-73. PubMed ID: 15621461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of substrate concentration on the bioleaching of heavy metals from sewage sludge.
    Chen YX; Hua YM; Zhang SH
    J Environ Sci (China); 2004; 16(5):788-92. PubMed ID: 15559813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the phylogenetic diversity of estrone-degrading bacteria in activated sewage sludge using microautoradiography-fluorescence in situ hybridization.
    Zang K; Kurisu F; Kasuga I; Furumai H; Yagi O
    Syst Appl Microbiol; 2008 Aug; 31(3):206-14. PubMed ID: 18513907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sulfur dosage and inoculum size on pilot-scale thermophilic bioleaching of heavy metals from sewage sludge.
    Chen SY; Cheng YK
    Chemosphere; 2019 Nov; 234():346-355. PubMed ID: 31228836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content.
    Zhang P; Zhu Y; Zhang G; Zou S; Zeng G; Wu Z
    Bioresour Technol; 2009 Feb; 100(3):1394-8. PubMed ID: 18945613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.
    Fang D; Zhou LX
    Chemosphere; 2007 Sep; 69(2):303-10. PubMed ID: 17537479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between microbial community dynamics and process performance during thermophilic sludge bioleaching.
    Chen SY; Chou LC
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16006-14. PubMed ID: 27146534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 16S rRNA in situ probing for the determination of the family level community structure implicated in enhanced biological nutrient removal.
    Mudaly DD; Atkinson BW; Bux F
    Water Sci Technol; 2001; 43(1):91-8. PubMed ID: 11379117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial quantification in activated sludge: the hits and misses.
    Hall SJ; Keller J; Blackall LL
    Water Sci Technol; 2003; 48(3):121-6. PubMed ID: 14518863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of oligonucleotide probes for the detection of Thiothrix spp. in activated sludge plants treating paper and board mill wastes.
    Kim SB; Goodfellow M; Kelly J; Saddler GS; Ward AC
    Water Sci Technol; 2002; 46(1-2):559-64. PubMed ID: 12216687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.
    Mehrotra A; Sreekrishnan TR
    Environ Technol; 2017 Nov; 38(21):2709-2724. PubMed ID: 28043205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an indigenous iron-oxidizing bacterium and its effectiveness in bioleaching heavy metals from anaerobically digested sewage sludge.
    Gu XY; Wong JW
    Environ Technol; 2004 Aug; 25(8):889-97. PubMed ID: 15366556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching of heavy metals from sewage sludge: a review.
    Pathak A; Dastidar MG; Sreekrishnan TR
    J Environ Manage; 2009 Jun; 90(8):2343-53. PubMed ID: 19303195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ detection of protein-hydrolysing microorganisms in activated sludge.
    Xia Y; Kong Y; Nielsen PH
    FEMS Microbiol Ecol; 2007 Apr; 60(1):156-65. PubMed ID: 17313663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates.
    Chen ZW; Liu YY; Wu JF; She Q; Jiang CY; Liu SJ
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):688-98. PubMed ID: 17111141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester.
    Ariesyady HD; Ito T; Okabe S
    Water Res; 2007 Apr; 41(7):1554-68. PubMed ID: 17291558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using respirometric techniques and fluorescent in situ hybridization to evaluate the heterotrophic active biomass in activated sludge.
    Ismail A; Wentzel MC; Bux F
    Biotechnol Bioeng; 2007 Oct; 98(3):561-8. PubMed ID: 17311354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of chromium from tannery sludge by indigenous Acidithiobacillus thiooxidans.
    Wang YS; Pan ZY; Lang JM; Xu JM; Zheng YG
    J Hazard Mater; 2007 Aug; 147(1-2):319-24. PubMed ID: 17275185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.