These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16622910)

  • 1. The study of neural network-based controller for controlling dissolved oxygen concentration in a sequencing batch reactor.
    Azwar ; Hussain MA; Ramachandran KB
    Bioprocess Biosyst Eng; 2006 Mar; 28(4):251-65. PubMed ID: 16622910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sliding mode control of dissolved oxygen in an integrated nitrogen removal process in a sequencing batch reactor (SBR).
    Muñoz C; Young H; Antileo C; Bornhardt C
    Water Sci Technol; 2009; 60(10):2545-53. PubMed ID: 19923760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage robust control of substrate concentration for an activated sludge process.
    Koumboulis FN; Kouvakas ND; King RE; Stathaki A
    ISA Trans; 2008 Jul; 47(3):267-78. PubMed ID: 18420202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The optimal dissolved oxygen profile in a nitrifying activated sludge process - comparisons with ammonium feedback control.
    Amand L; Carlsson B
    Water Sci Technol; 2013; 68(3):641-9. PubMed ID: 23925193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer control of pH and DO in a laboratory fermenter using a neural network technique.
    Mészáros A; Andrásik A; Mizsey P; Fonyó Z; Illeová V
    Bioprocess Biosyst Eng; 2004 Oct; 26(5):331-40. PubMed ID: 15300481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dissolved oxygen concentration on nitrite accumulation in nitrifying sequencing batch reactor.
    Sánchez O; Bernet N; Delgenès JP
    Water Environ Res; 2007 Aug; 79(8):845-50. PubMed ID: 17824530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aeration rate on the emission of N2O in anoxic-aerobic sequencing batch reactors (A/O SBRs).
    Hu Z; Zhang J; Li S; Xie H; Wang J; Zhang T; Li Y; Zhang H
    J Biosci Bioeng; 2010 May; 109(5):487-91. PubMed ID: 20347772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR).
    Wyffels S; Van Hulle SW; Boeckx P; Volcke EI; Van Cleemput O; Vanrolleghem PA; Verstraete W
    Biotechnol Bioeng; 2004 Jun; 86(5):531-42. PubMed ID: 15129436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural-network-based state feedback control of a nonlinear discrete-time system in nonstrict feedback form.
    Jagannathan S; He P
    IEEE Trans Neural Netw; 2008 Dec; 19(12):2073-87. PubMed ID: 19054732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel hybrid modeling methods for a full-scale cokes wastewater treatment plant.
    Lee DS; Vanrolleghem PA; Park JM
    J Biotechnol; 2005 Feb; 115(3):317-28. PubMed ID: 15639094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.
    Chung J; Shim H; Park SJ; Kim SJ; Bae W
    Bioprocess Biosyst Eng; 2006 Mar; 28(4):275-82. PubMed ID: 16408191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of nitrogen removal from sanitary landfill leachate.
    Kaczorek K; Ledakowicz S
    Bioprocess Biosyst Eng; 2006 Dec; 29(5-6):291-304. PubMed ID: 16944209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement-learning-based dual-control methodology for complex nonlinear discrete-time systems with application to spark engine EGR operation.
    Shih P; Kaul BC; Jagannathan S; Drallmeier JA
    IEEE Trans Neural Netw; 2008 Aug; 19(8):1369-88. PubMed ID: 18701368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolved oxygen regulation by logarithmic/antilogarithmic control to improve a wastewater treatment process.
    Flores VR; Sanchez EN; Béteau JF; Hernandez SC
    Environ Technol; 2013; 34(21-24):3103-16. PubMed ID: 24617069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving oxygen concentration control in activated sludge process with estimation of respiration and scheduling control.
    Gerksic S; Vrecko D; Hvala N
    Water Sci Technol; 2006; 53(4-5):283-91. PubMed ID: 16722079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of continuous fed-batch fermentation process using neural network based model predictive controller.
    Kiran AU; Jana AK
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):801-8. PubMed ID: 19259705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of an activated sludge process with nitrogen removal--a benchmark study.
    Carlsson B; Rehnström A
    Water Sci Technol; 2002; 45(4-5):135-42. PubMed ID: 11936626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of ammonia removal in activated sludge process with feedforward-feedback aeration controllers.
    Vrecko D; Hvala N; Stare A; Burica O; Strazar M; Levstek M; Cerar P; Podbevsek S
    Water Sci Technol; 2006; 53(4-5):125-32. PubMed ID: 16722062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedforward-feedback control of an activated sludge process: a simulation study.
    Vrecko D; Hvala N; Carlsson B
    Water Sci Technol; 2003; 47(12):19-26. PubMed ID: 12926665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of dissolved oxygen on PHB accumulation in activated sludge cultures.
    Third KA; Newland M; Cord-Ruwisch R
    Biotechnol Bioeng; 2003 Apr; 82(2):238-50. PubMed ID: 12584766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.