These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 16623397)

  • 1. Symbioses between bacteria and gutless marine oligochaetes.
    Dubilier N; Blazejak A; Rühland C
    Prog Mol Subcell Biol; 2006; 41():251-75. PubMed ID: 16623397
    [No Abstract]   [Full Text] [Related]  

  • 2. Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5'-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (oligochaeta) from Bermuda and the Bahamas.
    Blazejak A; Kuever J; Erséus C; Amann R; Dubilier N
    Appl Environ Microbiol; 2006 Aug; 72(8):5527-36. PubMed ID: 16885306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas.
    Neave MJ; Apprill A; Ferrier-Pagès C; Voolstra CR
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8315-24. PubMed ID: 27557714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acquisition of a Novel Sulfur-Oxidizing Symbiont in the Gutless Marine Worm Inanidrilus exumae.
    Bergin C; Wentrup C; Brewig N; Blazejak A; Erséus C; Giere O; Schmid M; De Wit P; Dubilier N
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29330187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closely coupled evolutionary history of ecto- and endosymbionts from two distantly related animal phyla.
    Zimmermann J; Wentrup C; Sadowski M; Blazejak A; Gruber-Vodicka HR; Kleiner M; Ott JA; Cronholm B; De Wit P; Erséus C; Dubilier N
    Mol Ecol; 2016 Jul; 25(13):3203-23. PubMed ID: 26826340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugation-Based Enrichment of Bacterial Cell Populations for Metaproteomic Studies on Bacteria-Invertebrate Symbioses.
    Hinzke T; Kleiner M; Markert S
    Methods Mol Biol; 2018; 1841():319-334. PubMed ID: 30259496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First detection of thiotrophic symbiont phylotypes in the pelagic marine environment.
    Heindl NR; Gruber-Vodicka HR; Bayer C; Lücker S; Ott JA; Bulgheresi S
    FEMS Microbiol Ecol; 2011 Jul; 77(1):223-7. PubMed ID: 21434948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic marine invertebrates are reservoirs for cryptic and diverse protists and fungi.
    Holt CC; Boscaro V; Van Steenkiste NWL; Herranz M; Mathur V; Irwin NAT; Buckholtz G; Leander BS; Keeling PJ
    Microbiome; 2022 Sep; 10(1):161. PubMed ID: 36180959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular and morphological characterization of the association between bacterial endosymbionts and the marine nematode Astomonema sp. from the Bahamas.
    Musat N; Giere O; Gieseke A; Thiermann F; Amann R; Dubilier N
    Environ Microbiol; 2007 May; 9(5):1345-53. PubMed ID: 17472647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)--model systems for studies of symbiont-host adaptation.
    Stewart FJ; Cavanaugh CM
    Antonie Van Leeuwenhoek; 2006 Nov; 90(4):343-60. PubMed ID: 17028934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons from Digestive-Tract Symbioses Between Bacteria and Invertebrates.
    Graf J
    Annu Rev Microbiol; 2016 Sep; 70():375-93. PubMed ID: 27482740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blue-green pigmented symbionts of echiurids from polar marine environments.
    Reichardt W
    Acta Microbiol Immunol Hung; 1994; 41(3):265-71. PubMed ID: 7697322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convergent and divergent evolution of metabolism in sulfur-oxidizing symbionts and the role of horizontal gene transfer.
    Kleiner M; Petersen JM; Dubilier N
    Curr Opin Microbiol; 2012 Oct; 15(5):621-31. PubMed ID: 23068075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From chemical structure to environmental biosynthetic pathways: navigating marine invertebrate-bacteria associations.
    Schmidt EW
    Trends Biotechnol; 2005 Sep; 23(9):437-40. PubMed ID: 16038996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-evolution of marine worms and their chemoautotrophic bacterial symbionts: unexpected host switches explained by ecological fitting?
    Brune A
    Mol Ecol; 2016 Jul; 25(13):2964-6. PubMed ID: 27373707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring symbioses by single-cell genomics.
    Kamke J; Bayer K; Woyke T; Hentschel U
    Biol Bull; 2012 Aug; 223(1):30-43. PubMed ID: 22983031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endosymbiotic microflora of the vestimentiferan tubeworm ( Lamellibrachia sp.) from a bathyal cold seep.
    Kimura H; Higashide Y; Naganuma T
    Mar Biotechnol (NY); 2003; 5(6):593-603. PubMed ID: 14508655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts.
    Alex A; Antunes A
    PLoS One; 2018; 13(5):e0194368. PubMed ID: 29775460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant tubeworms.
    Bright M; Klose J; Nussbaumer AD
    Curr Biol; 2013 Mar; 23(6):R224-5. PubMed ID: 23518047
    [No Abstract]   [Full Text] [Related]  

  • 20. Nitrogen fixation in eukaryotes--new models for symbiosis.
    Kneip C; Lockhart P; Voss C; Maier UG
    BMC Evol Biol; 2007 Apr; 7():55. PubMed ID: 17408485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.