These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Spatial impulse responses from a flexible baffled circular piston. Aarts RM; Janssen AJ J Acoust Soc Am; 2011 May; 129(5):2952-9. PubMed ID: 21568398 [TBL] [Abstract][Full Text] [Related]
3. Zernike-Bessel representation and its application to Hankel transforms. Cerjan C J Opt Soc Am A Opt Image Sci Vis; 2007 Jun; 24(6):1609-16. PubMed ID: 17491628 [TBL] [Abstract][Full Text] [Related]
4. Zernike vs. Bessel circular functions in visual optics. Trevino JP; Gómez-Correa JE; Iskander DR; Chávez-Cerda S Ophthalmic Physiol Opt; 2013 Jul; 33(4):394-402. PubMed ID: 23668897 [TBL] [Abstract][Full Text] [Related]
5. Treating singularities present in the Sutcliffe-Tennyson vibrational Hamiltonian in orthogonal internal coordinates. Czakó G; Szalay V; Császár AG; Furtenbacher T J Chem Phys; 2005 Jan; 122(2):024101. PubMed ID: 15638566 [TBL] [Abstract][Full Text] [Related]
6. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points. Shi Z; Sui Y; Liu Z; Peng J; Yang H Appl Opt; 2012 Jun; 51(18):4210-4. PubMed ID: 22722299 [TBL] [Abstract][Full Text] [Related]
7. Modeling of corneal surfaces with radial polynomials. Iskander DR; Morelande MR; Collins MJ; Davis B IEEE Trans Biomed Eng; 2002 Apr; 49(4):320-8. PubMed ID: 11942723 [TBL] [Abstract][Full Text] [Related]
8. Image analysis by Tchebichef moments. Mukundan R; Ong SH; Lee PA IEEE Trans Image Process; 2001; 10(9):1357-64. PubMed ID: 18255550 [TBL] [Abstract][Full Text] [Related]
9. Orthonormal curvature polynomials over a unit circle: basis set derived from curvatures of Zernike polynomials. Zhao C; Burge JH Opt Express; 2013 Dec; 21(25):31430-43. PubMed ID: 24514717 [TBL] [Abstract][Full Text] [Related]
11. Transformation of Zernike coefficients: a Fourier-based method for scaled, translated, and rotated wavefront apertures. Tatulli E J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):726-32. PubMed ID: 23595334 [TBL] [Abstract][Full Text] [Related]
12. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials. Zhao C; Burge JH Opt Express; 2007 Dec; 15(26):18014-24. PubMed ID: 19551099 [TBL] [Abstract][Full Text] [Related]
14. A new basis set for molecular bending degrees of freedom. Jutier L J Chem Phys; 2010 Jul; 133(3):034107. PubMed ID: 20649308 [TBL] [Abstract][Full Text] [Related]
15. Recursive formula to compute Zernike radial polynomials. Honarvar Shakibaei B; Paramesran R Opt Lett; 2013 Jul; 38(14):2487-9. PubMed ID: 23939089 [TBL] [Abstract][Full Text] [Related]
16. Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs. Duret S; Bouferguene A; Safouhi H J Comput Chem; 2008 Apr; 29(6):934-44. PubMed ID: 17999382 [TBL] [Abstract][Full Text] [Related]
17. Zernike expansion of derivatives and Laplacians of the Zernike circle polynomials. Janssen AJ J Opt Soc Am A Opt Image Sci Vis; 2014 Jul; 31(7):1604-13. PubMed ID: 25121449 [TBL] [Abstract][Full Text] [Related]
18. Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data. Martinez-Finkelshtein A; Delgado AM; Castro GM; Zarzo A; Alió JL Invest Ophthalmol Vis Sci; 2009 Dec; 50(12):5639-45. PubMed ID: 19608536 [TBL] [Abstract][Full Text] [Related]
19. On a propagation-invariant, orthogonal modal expansion on the unit disk: going beyond Nijboer-Zernike theory of aberrations. El Gawhary O Opt Lett; 2015 Jun; 40(11):2626-9. PubMed ID: 26030574 [TBL] [Abstract][Full Text] [Related]
20. Use of a nondirect-product basis for treating singularities in triatomic rotational-vibrational calculations. Czakó G; Furtenbacher T; Barletta P; Császár AG; Szalay V; Sutcliffe BT Phys Chem Chem Phys; 2007 Jul; 9(26):3407-15. PubMed ID: 17664964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]