BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 16623506)

  • 1. Dielectric study of the slow motional processes in the polymorphic States of anhydrous caffeine.
    Moura Ramos JJ; Correia NT; Diogo HP; Descamps M
    J Phys Chem B; 2006 Apr; 110(16):8268-73. PubMed ID: 16623506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow molecular mobility in the crystalline and amorphous solid states of pentitols: a study by thermally stimulated depolarisation currents and by differential scanning calorimetry.
    Diogo HP; Pinto SS; Moura Ramos JJ
    Carbohydr Res; 2007 May; 342(7):961-9. PubMed ID: 17303096
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow molecular mobility in the crystalline and amorphous solid states of glucose as studied by Thermally Stimulated Depolarization Currents (TSDC).
    Diogo HP; Moura Ramos JJ
    Carbohydr Res; 2008 Nov; 343(16):2797-803. PubMed ID: 18789798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastic and glassy crystal states of caffeine.
    Descamps M; Correia NT; Derollez P; Danede F; Capet F
    J Phys Chem B; 2005 Aug; 109(33):16092-8. PubMed ID: 16853045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mobility studies on the amorphous state of disaccharides. I-thermally stimulated currents and differential scanning calorimetry.
    Pinto SS; Diogo HP; Nunes TG; Moura Ramos JJ
    Carbohydr Res; 2010 Aug; 345(12):1802-7. PubMed ID: 20591418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The slow molecular mobility in amorphous trehalose.
    Moura Ramos JJ; Pinto SS; Diogo HP
    Chemphyschem; 2007 Nov; 8(16):2391-6. PubMed ID: 17935100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mobility in raffinose in the crystalline pentahydrate form and in the amorphous anhydrous form.
    Moura Ramos JJ; Pinto SS; Diogo HP
    Pharm Res; 2005 Jul; 22(7):1142-8. PubMed ID: 16028015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymorphic transformation of anhydrous caffeine under compression and grinding: a re-evaluation.
    Mazel V; Delplace C; Busignies V; Faivre V; Tchoreloff P; Yagoubi N
    Drug Dev Ind Pharm; 2011 Jul; 37(7):832-40. PubMed ID: 21214492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low- and high-frequency Raman investigations on caffeine: polymorphism, disorder and phase transformation.
    Hédoux A; Decroix AA; Guinet Y; Paccou L; Derollez P; Descamps M
    J Phys Chem B; 2011 May; 115(19):5746-53. PubMed ID: 21513330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal behavior of disordered phase of caffeine molecular crystal: insights from Monte Carlo simulation studies.
    Murugan NA; Sayeed A
    J Chem Phys; 2009 May; 130(20):204514. PubMed ID: 19485464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipolar Reorientations in Amorphous Nimesulide: A TSDC and DSC Study.
    Moura Ramos JJ; Diogo HP
    Curr Drug Deliv; 2017; 14(1):91-98. PubMed ID: 27160253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.
    Mannock DA; Collins MD; Kreichbaum M; Harper PE; Gruner SM; McElhaney RN
    Chem Phys Lipids; 2007 Jul; 148(1):26-50. PubMed ID: 17524381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow molecular mobility in the amorphous solid state of fructose: fragility and aging.
    Correia NT; Diogo HP; Moura Ramos JJ
    J Food Sci; 2009; 74(9):E526-33. PubMed ID: 20492115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of a bioactive compound (caffeine) mobility at the vicinity of the mechanical glass transition temperature induced by gelling polysaccharide.
    Jiang B; Kasapis S
    J Agric Food Chem; 2011 Nov; 59(21):11825-32. PubMed ID: 21936521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water mediates the metastable crystal-to-stable crystal phase transition process in phospholipid aqueous dispersion.
    Wu FG; Chen L; Yu ZW
    J Phys Chem B; 2009 Jan; 113(4):869-72. PubMed ID: 19125632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative humidity-temperature transition boundaries for anhydrous β-caffeine and caffeine hydrate crystalline forms.
    Allan MC; Owens B; Mauer LJ
    J Food Sci; 2020 Jun; 85(6):1815-1826. PubMed ID: 32449950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anhydrous goat's milk fat: thermal and structural behaviors studied by coupled differential scanning calorimetry and X-ray diffraction. 2. Influence of cooling rate.
    Amara-Dali WB; Lesieur P; Artzner F; Karray N; Attia H; Ollivon M
    J Agric Food Chem; 2007 Jun; 55(12):4741-51. PubMed ID: 17497873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined use of thermomechanics and UV spectroscopy to rationalize the kinetics of bioactive compound (caffeine) mobility in a high solids matrix.
    Kasapis S; Shrinivas P
    J Agric Food Chem; 2010 Mar; 58(6):3825-32. PubMed ID: 20192216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation behaviour of D(-)-salicin as studied by Thermally Stimulated Depolarisation Currents (TSDC) and Differential Scanning Calorimetry (DSC).
    Diogo HP; Pinto SS; Moura Ramos JJ
    Int J Pharm; 2008 Jun; 358(1-2):192-7. PubMed ID: 18417303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anhydrous goat's milk fat: thermal and structural behavior. 1. Crystalline forms obtained by slow cooling.
    Ben Amara-Dali W; Karray N; Lesieur P; Ollivon M
    J Agric Food Chem; 2005 Dec; 53(26):10018-25. PubMed ID: 16366689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.