BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16623519)

  • 1. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite.
    Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N
    J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy.
    Yang DQ; Sacher E
    J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon 1s X-ray photoemission line shape analysis of highly oriented pyrolytic graphite: the influence of structural damage on peak asymmetry.
    Yang DQ; Sacher E
    Langmuir; 2006 Jan; 22(3):860-2. PubMed ID: 16430237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite.
    Zhang H; Fu Q; Yao Y; Zhang Z; Ma T; Tan D; Bao X
    Langmuir; 2008 Oct; 24(19):10874-8. PubMed ID: 18729334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dipolar driven spontaneous self assembly of superparamagnetic Co nanoparticles into micrometric rice-grain like structures.
    Varón M; Peña L; Balcells L; Skumryev V; Martinez B; Puntes V
    Langmuir; 2010 Jan; 26(1):109-16. PubMed ID: 20038165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of stable exfoliated Pt-clay nanocatalyst.
    Zhang W; Li MK; Wang R; Yue PL; Gao P
    Langmuir; 2009 Jul; 25(14):8226-34. PubMed ID: 19594188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG.
    Taing J; Cheng MH; Hemminger JC
    ACS Nano; 2011 Aug; 5(8):6325-33. PubMed ID: 21790177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoelectrocatalyst based on high-density au/pt hybrid nanoparticles supported on a silica nanosphere.
    Guo S; Zhai J; Fang Y; Dong S; Wang E
    Chem Asian J; 2008 Jul; 3(7):1156-62. PubMed ID: 18465764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrodeposition of platinum on highly oriented pyrolytic graphite. Part I: electrochemical characterization.
    Lu G; Zangari G
    J Phys Chem B; 2005 Apr; 109(16):7998-8007. PubMed ID: 16851935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platinum monolayer on nonnoble metal-noble metal core-shell nanoparticle electrocatalysts for O2 reduction.
    Zhang J; Lima FH; Shao MH; Sasaki K; Wang JX; Hanson J; Adzic RR
    J Phys Chem B; 2005 Dec; 109(48):22701-4. PubMed ID: 16853957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core.
    Zeng J; Yang J; Lee JY; Zhou W
    J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picosecond time resolved photoluminescence spectroscopy of a tetracene film on highly oriented pyrolytic graphite: dynamical relaxation, trap emission, and superradiance.
    Voigt M; Langner A; Schouwink P; Lupton JM; Mahrt RF; Sokolowski M
    J Chem Phys; 2007 Sep; 127(11):114705. PubMed ID: 17887868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol).
    Zahr AS; Davis CA; Pishko MV
    Langmuir; 2006 Sep; 22(19):8178-85. PubMed ID: 16952259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleation and growth of cobalt nanostructures on highly oriented pyrolytic graphite.
    Poon SW; Pan JS; Tok ES
    Phys Chem Chem Phys; 2006 Jul; 8(28):3326-34. PubMed ID: 16835681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steric effects in the scattering of oriented CH3Cl molecular beam from a graphite surface: weak interaction of physisorption.
    Fukuyama T; Okada M; Kasai T
    J Phys Chem A; 2009 Dec; 113(52):14749-54. PubMed ID: 20028169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors.
    Kim BJ; Lee YS; Park SJ
    J Colloid Interface Sci; 2008 Feb; 318(2):530-3. PubMed ID: 18001762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetries in transition metal XPS spectra: metal nanoparticle structure, and interaction with the graphene-structured substrate surface.
    Sacher E
    Langmuir; 2010 Mar; 26(6):3807-14. PubMed ID: 19754204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using DC and large-amplitude Fourier transformed AC voltammetry.
    Fleming BD; Zhang J; Elton D; Bond AM
    Anal Chem; 2007 Sep; 79(17):6515-26. PubMed ID: 17668927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.