BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 16623521)

  • 1. Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide.
    Redfern PC; Zapol P; Sternberg M; Adiga SP; Zygmunt SA; Curtiss LA
    J Phys Chem B; 2006 Apr; 110(16):8363-71. PubMed ID: 16623521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface.
    Fu H; Liu ZP; Li ZH; Wang WN; Fan KN
    J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic aspects of propene epoxidation by hydrogen peroxide. Catalytic role of water molecules, external electric field, and zeolite framework of TS-1.
    Stare J; Henson NJ; Eckert J
    J Chem Inf Model; 2009 Apr; 49(4):833-46. PubMed ID: 19267473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the MgO(100)-support facilitate the reaction of nitrogen and hydrogen molecules catalyzed by Zr2Pd2 clusters? A computational study.
    Kuznetsov AE; Musaev DG
    Inorg Chem; 2010 Mar; 49(5):2557-67. PubMed ID: 20128599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of and effect of coadsorption on water dissociation on an oxygen vacancy of the MgO(100) surface.
    Wang Y; Nguyen HN; Truong TN
    Chemistry; 2006 Jul; 12(22):5859-67. PubMed ID: 16729339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactivity of alkanes on zeolites: a computational study of propane conversion reactions.
    Zheng X; Blowers P
    J Phys Chem A; 2005 Dec; 109(47):10734-41. PubMed ID: 16863122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidative dehydrogenation of propane over a VO2-exchanged MCM-22 zeolite: a DFT study.
    Wannakao S; Boekfa B; Khongpracha P; Probst M; Limtrakul J
    Chemphyschem; 2010 Nov; 11(16):3432-8. PubMed ID: 20973120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study on the mechanisms and energetics of trimethylindium reactions with H2O and H2S.
    Raghunath P; Lin MC
    J Phys Chem A; 2007 Jul; 111(28):6481-8. PubMed ID: 17585840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface.
    Chrétien S; Metiu H
    J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the catalytic activity of Au3, Au4+, Au5, and Au5- in the gas-phase reaction of H2 and O2 to form hydrogen peroxide: a density functional theory investigation.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2005 Dec; 109(47):22392-406. PubMed ID: 16853917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts.
    Kondratenko EV; Steinfeldt N; Baerns M
    Phys Chem Chem Phys; 2006 Apr; 8(13):1624-33. PubMed ID: 16633647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms for O2 dissociation over the BaO (100) surface.
    Lu NX; Fu G; Xu X; Wan HL
    J Chem Phys; 2008 Jan; 128(3):034702. PubMed ID: 18205513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size-dependent catalytic activity of supported vanadium oxide species: oxidative dehydrogenation of propane.
    Rozanska X; Fortrie R; Sauer J
    J Am Chem Soc; 2014 May; 136(21):7751-61. PubMed ID: 24828405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying the O2 diffusion and reduction mechanisms on CeO2 electrolyte in solid oxide fuel cells: a DFT + U study.
    Chen HT; Chang JG; Chen HL; Ju SP
    J Comput Chem; 2009 Nov; 30(15):2433-42. PubMed ID: 19360791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on performance of Ni3 V2O8 catalyst and analysis of X-ray photoelectron spectroscopy].
    Xu AJ; Zhaorigetu B; Jia ML; Lin Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2134-8. PubMed ID: 18306814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites.
    Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG
    Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 Catalyst.
    Wells DH; Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2006 Aug; 110(30):14627-39. PubMed ID: 16869565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
    Pan YX; Liu CJ; Mei D; Ge Q
    Langmuir; 2010 Apr; 26(8):5551-8. PubMed ID: 20047326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.