These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 16623525)

  • 1. Molecular dynamics simulation study of water adsorption on hydroxylated graphite surfaces.
    Picaud S; Collignon B; Hoang PN; Rayez JC
    J Phys Chem B; 2006 Apr; 110(16):8398-408. PubMed ID: 16623525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of water molecules on partially oxidized graphite surfaces: a molecular dynamics study of the competition between OH and COOH sites.
    Picaud S; Collignon B; Hoang PN; Rayez JC
    Phys Chem Chem Phys; 2008 Dec; 10(46):6998-7009. PubMed ID: 19030596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot particles.
    Moulin F; Picaud S; Hoang PN; Jedlovszky P
    J Chem Phys; 2007 Oct; 127(16):164719. PubMed ID: 17979383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water clusters on graphite: methodology for quantum chemical a priori prediction of reaction rate constants.
    Xu S; Irle S; Musaev DG; Lin MC
    J Phys Chem A; 2005 Oct; 109(42):9563-72. PubMed ID: 16866408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transport processes at alpha-quartz-water interfaces: insights from first-principles molecular dynamics simulations.
    Adeagbo WA; Doltsinis NL; Klevakina K; Renner J
    Chemphyschem; 2008 May; 9(7):994-1002. PubMed ID: 18404743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum chemical prediction of reaction pathways and rate constants for dissociative adsorption of CO(x) and NO(x) on the graphite (0001) surface.
    Xu SC; Irle S; Musaev DG; Lin MC
    J Phys Chem B; 2006 Oct; 110(42):21135-44. PubMed ID: 17048937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab initio studies of a water layer at transition metal surfaces.
    Vassilev P; van Santen RA; Koper MT
    J Chem Phys; 2005 Feb; 122(5):54701. PubMed ID: 15740340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation study of the structure of poly(ethylene oxide) brushes on nonpolar surfaces in aqueous solution.
    Bedrov D; Smith GD
    Langmuir; 2006 Jul; 22(14):6189-94. PubMed ID: 16800675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory calculations and molecular dynamics simulations of the adsorption of biomolecules on graphene surfaces.
    Qin W; Li X; Bian WW; Fan XJ; Qi JY
    Biomaterials; 2010 Feb; 31(5):1007-16. PubMed ID: 19880174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer adsorption of water at a rutile TiO2)(110) surface: towards a realistic modeling by molecular dynamics.
    Kornherr A; Vogtenhuber D; Ruckenbauer M; Podloucky R; Zifferer G
    J Chem Phys; 2004 Aug; 121(8):3722-6. PubMed ID: 15303939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water adsorption on oxidized single atomic vacancies present at the surface of small carbonaceous nanoparticles modeling soot.
    Oubal M; Picaud S; Rayez MT; Rayez JC
    Chemphyschem; 2010 Dec; 11(18):4088-96. PubMed ID: 21110375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glass-liquid transition of water on hydrophobic surfaces.
    Souda R
    J Chem Phys; 2008 Sep; 129(12):124707. PubMed ID: 19045048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein adsorption on the hydrophilic surface of a glassy polymer: a computer simulation study.
    Raffaini G; Ganazzoli F
    Phys Chem Chem Phys; 2006 Jun; 8(23):2765-72. PubMed ID: 16763710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and structure of benzene on silica surfaces and in nanopores.
    Coasne B; Alba-Simionesco C; Audonnet F; Dosseh G; Gubbins KE
    Langmuir; 2009 Sep; 25(18):10648-59. PubMed ID: 19670890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydration and dewetting near graphite-CH(3) and graphite-COOH plates.
    Li J; Liu T; Li X; Ye L; Chen H; Fang H; Wu Z; Zhou R
    J Phys Chem B; 2005 Jul; 109(28):13639-48. PubMed ID: 16852709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative simulation study of nitrogen and ammonia adsorption on graphitized and nongraphitized carbon blacks.
    Herrera LF; Do DD; Birkett GR
    J Colloid Interface Sci; 2008 Apr; 320(2):415-22. PubMed ID: 18258251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance.
    Utesch T; Daminelli G; Mroginski MA
    Langmuir; 2011 Nov; 27(21):13144-53. PubMed ID: 21958113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface structure of (10(-)10) and (11(-)20) surfaces of ZnO with density functional theory and atomistic simulation.
    Cooke DJ; Marmier A; Parker SC
    J Phys Chem B; 2006 Apr; 110(15):7985-91. PubMed ID: 16610898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and dynamics of tetrahalomethane adsorption on (001) surfaces of graphite and α-quartz.
    Leuty GM; Tsige M
    J Phys Chem B; 2010 Nov; 114(44):13970-81. PubMed ID: 20961079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.