BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 16623891)

  • 21. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport.
    Li P; Wang Y; Qian Q; Fu Z; Wang M; Zeng D; Li B; Wang X; Li J
    Cell Res; 2007 May; 17(5):402-10. PubMed ID: 17468779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport.
    Morita Y; Kyozuka J
    Plant Cell Physiol; 2007 Mar; 48(3):540-9. PubMed ID: 17303594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending.
    Cui D; Neill SJ; Tang Z; Cai W
    J Exp Bot; 2005 May; 56(415):1327-34. PubMed ID: 15767322
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction between two auxin-resistant mutants and their effects on lateral root formation in rice (Oryza sativa L.).
    Chhun T; Taketa S; Tsurumi S; Ichii M
    J Exp Bot; 2003 Dec; 54(393):2701-8. PubMed ID: 14623941
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Domain II mutations in CRANE/IAA18 suppress lateral root formation and affect shoot development in Arabidopsis thaliana.
    Uehara T; Okushima Y; Mimura T; Tasaka M; Fukaki H
    Plant Cell Physiol; 2008 Jul; 49(7):1025-38. PubMed ID: 18505759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis.
    Shimada A; Ueguchi-Tanaka M; Sakamoto T; Fujioka S; Takatsuto S; Yoshida S; Sazuka T; Ashikari M; Matsuoka M
    Plant J; 2006 Nov; 48(3):390-402. PubMed ID: 17052323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants.
    Jain M; Tyagi AK; Khurana JP
    FEBS J; 2006 Dec; 273(23):5245-60. PubMed ID: 17116242
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield.
    Li D; Wang L; Wang M; Xu YY; Luo W; Liu YJ; Xu ZH; Li J; Chong K
    Plant Biotechnol J; 2009 Oct; 7(8):791-806. PubMed ID: 19754838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Function of auxin-binding protein gene during cucumber fruit development].
    Bai JG; Wang XJ; Yin QX; Xu YZ; Zhao RX
    Shi Yan Sheng Wu Xue Bao; 2004 Dec; 37(6):494-500. PubMed ID: 15789770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 'Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells'.
    Yang JH; Han SJ; Yoon EK; Lee WS
    Nucleic Acids Res; 2006; 34(6):1892-9. PubMed ID: 16598073
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice.
    Quilis J; PeƱas G; Messeguer J; Brugidou C; San Segundo B
    Mol Plant Microbe Interact; 2008 Sep; 21(9):1215-31. PubMed ID: 18700826
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional and signaling mechanism analysis of rice CRYPTOCHROME 1.
    Zhang YC; Gong SF; Li QH; Sang Y; Yang HQ
    Plant J; 2006 Jun; 46(6):971-83. PubMed ID: 16805731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adventitious root formation in rice requires OsGNOM1 and is mediated by the OsPINs family.
    Liu S; Wang J; Wang L; Wang X; Xue Y; Wu P; Shou H
    Cell Res; 2009 Sep; 19(9):1110-9. PubMed ID: 19546891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutation in domain II of IAA1 confers diverse auxin-related phenotypes and represses auxin-activated expression of Aux/IAA genes in steroid regulator-inducible system.
    Park JY; Kim HJ; Kim J
    Plant J; 2002 Dec; 32(5):669-83. PubMed ID: 12472684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility.
    Yadav SR; Khanday I; Majhi BB; Veluthambi K; Vijayraghavan U
    Plant Cell Physiol; 2011 Dec; 52(12):2123-35. PubMed ID: 22016342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis.
    Guo J; Wu J; Ji Q; Wang C; Luo L; Yuan Y; Wang Y; Wang J
    J Genet Genomics; 2008 Feb; 35(2):105-18. PubMed ID: 18407058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice.
    Zhang S; Li G; Fang J; Chen W; Jiang H; Zou J; Liu X; Zhao X; Li X; Chu C; Xie Q; Jiang X; Zhu L
    J Integr Plant Biol; 2010 Jul; 52(7):626-38. PubMed ID: 20590993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium.
    Singla B; Chugh A; Khurana JP; Khurana P
    J Exp Bot; 2006; 57(15):4059-70. PubMed ID: 17077182
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Duplication and expression analysis of multicopy miRNA gene family members in Arabidopsis and rice.
    Jiang D; Yin C; Yu A; Zhou X; Liang W; Yuan Z; Xu Y; Yu Q; Wen T; Zhang D
    Cell Res; 2006 May; 16(5):507-18. PubMed ID: 16699546
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.