These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 16624336)

  • 1. Limit cycles in a chemostat model for a single species with age structure.
    Toth D; Kot M
    Math Biosci; 2006 Jul; 202(1):194-217. PubMed ID: 16624336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifurcation structure of a chemostat model for an age-structured predator and its prey.
    Toth DJ
    J Biol Dyn; 2008 Oct; 2(4):428-48. PubMed ID: 22876907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor.
    Yuan S; Xiao D; Han M
    Math Biosci; 2006 Jul; 202(1):1-28. PubMed ID: 16797043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodicity in an epidemic model with a generalized non-linear incidence.
    Alexander ME; Moghadas SM
    Math Biosci; 2004 May; 189(1):75-96. PubMed ID: 15051415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic consequences of reproductive delay in Leslie matrix models with nonlinear survival probabilities.
    Wikan A
    Math Biosci; 1997 Nov; 146(1):37-62. PubMed ID: 9357293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prey selection, vertical migrations and the impacts of harvesting upon the population dynamics of a predator-prey system.
    Edwards HJ; Dytham C; Pitchford JW; Righton D
    Bull Math Biol; 2007 Aug; 69(6):1827-46. PubMed ID: 17443393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [On the competition among discrete-structured populations: a matrix model for population dynamics of woodreed and birch growing together].
    Ulanova NG; Belova IN; Logofet DO
    Zh Obshch Biol; 2008; 69(6):441-57. PubMed ID: 19140335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting stability of mixed microbial cultures from single species experiments: 2. Physiological model.
    Pilyugin SS; Reeves GT; Narang A
    Math Biosci; 2004 Dec; 192(2):111-36. PubMed ID: 15627489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion.
    Fiedler B; Hsu SB
    J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time delay in simple chemostat models.
    MacDonald N
    Biotechnol Bioeng; 1976 Jun; 18(6):805-12. PubMed ID: 1268333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple unforced oscillatory growth model in the chemostat.
    Lemesle V; Gouzé JL
    Bull Math Biol; 2008 Feb; 70(2):344-57. PubMed ID: 17912591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed feedback control for a chemostat model.
    Tagashira O; Hara T
    Math Biosci; 2006 May; 201(1-2):101-12. PubMed ID: 16472826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simplifying a physiologically structured population model to a stage-structured biomass model.
    De Roos AM; Schellekens T; Van Kooten T; Van De Wolfshaar K; Claessen D; Persson L
    Theor Popul Biol; 2008 Feb; 73(1):47-62. PubMed ID: 18006030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition in chemostat-type equations with two habitats.
    Nakaoka S; Takeuchi Y
    Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Analysis of Linearly Implicit Methods for Discontinuous Nonlinear Gurtin-MacCamy Model.
    Chen Z; Yan T; Yang Z
    J Comput Biol; 2023 May; 30(5):588-608. PubMed ID: 36940305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global dynamics of the chemostat with different removal rates and variable yields.
    Sari T; Mazenc F
    Math Biosci Eng; 2011 Jul; 8(3):827-40. PubMed ID: 21675813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of two predator-prey models with Holling's type I functional response.
    Seo G; Kot M
    Math Biosci; 2008 Apr; 212(2):161-79. PubMed ID: 18346761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bifurcations of an epidemic model with non-linear incidence and infection-dependent removal rate.
    Moghadas SM; Alexander ME
    Math Med Biol; 2006 Sep; 23(3):231-54. PubMed ID: 16648145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spreading speeds as slowest wave speeds for cooperative systems.
    Li B; Weinberger HF; Lewis MA
    Math Biosci; 2005 Jul; 196(1):82-98. PubMed ID: 15936780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discontinuity induced bifurcations in a model of Saccharomyces cerevisiae.
    Simpson DJ; Kompala DS; Meiss JD
    Math Biosci; 2009 Mar; 218(1):40-9. PubMed ID: 19162044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.