BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

637 related articles for article (PubMed ID: 16624342)

  • 21. Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation.
    Japee SA; Pittman RN; Ellis CG
    Microcirculation; 2005 Sep; 12(6):507-15. PubMed ID: 16147467
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Capillary penetration failure of blood suspensions.
    Zhou R; Chang HC
    J Colloid Interface Sci; 2005 Jul; 287(2):647-56. PubMed ID: 15925633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Erythrocyte concentration in vessels of the microcirculatory bed of the mesentery of the white rat (according to the results of in vivo microcinematography)].
    Kozlov VI; Kistanova EK
    Fiziol Zh SSSR Im I M Sechenova; 1984 Nov; 70(11):1527-33. PubMed ID: 6519286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The influence of suspending phase viscosity on the passage of red blood cells through capillary-size micropores.
    Fisher TC; Van Der Waart FJ; Meiselman HJ
    Biorheology; 1996; 33(2):153-68. PubMed ID: 8679962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The distribution of blood flow velocity in the terminal bed of the rat mesentery].
    Kostromina EIu; Shinkarenko VS; Rodionov IM
    Biull Eksp Biol Med; 1989 May; 107(5):515-7. PubMed ID: 2736274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV).
    Nakano A; Sugii Y; Minamiyama M; Niimi H
    Clin Hemorheol Microcirc; 2003; 29(3-4):445-55. PubMed ID: 14724373
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Role of erythrocyte deformability in erythrocyte transit time and bioavailability of O2].
    Thao Chan M; Catry E; George C
    J Mal Vasc; 1985; 10(1):43-6. PubMed ID: 3981074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Digital blood flow analysis from microscopic images of mesenteric microvessel with multiple branching.
    Manjunatha M; Singh M
    Clin Hemorheol Microcirc; 2002; 27(2):91-106. PubMed ID: 12237479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantification of capillary RBC flow.
    Harris PD
    Bibl Anat; 1967; 9():155-9. PubMed ID: 6029860
    [No Abstract]   [Full Text] [Related]  

  • 33. The effects of aging on capillary hemodynamics in contracting rat spinotrapezius muscle.
    Copp SW; Ferreira LF; Herspring KF; Musch TI; Poole DC
    Microvasc Res; 2009 Mar; 77(2):113-9. PubMed ID: 19094997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of erythrocyte motion in filtration tests and in vivo flow.
    Cokelet GR
    Scand J Clin Lab Invest Suppl; 1981; 156():77-82. PubMed ID: 6948404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Microcirculatory disturbances in normotensive stage of endotoxin shock].
    Sugiura Y; Takakura K; Shine S; Goto Y
    Masui; 1994 Jan; 43(1):13-7. PubMed ID: 8309047
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated method for tracking vast numbers of FITC-labeled RBCs in microvessels of rat brain in vivo using a high-speed confocal microscope system.
    Tomita M; Osada T; Schiszler I; Tomita Y; Unekawa M; Toriumi H; Tanahashi N; Suzuki N
    Microcirculation; 2008 Feb; 15(2):163-74. PubMed ID: 18260006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer.
    Kindig CA; Richardson TE; Poole DC
    J Appl Physiol (1985); 2002 Jun; 92(6):2513-20. PubMed ID: 12015367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Contact time of red blood cells with alveolar air].
    Murayama F
    Nihon Kyobu Shikkan Gakkai Zasshi; 1993 Jun; 31(6):725-32. PubMed ID: 8345706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy evaluation of RBC velocity measurement in nail-fold capillaries.
    Wu CC; Lin WC; Zhang G; Chang CW; Liu RS; Lin KP; Huang TC
    Microvasc Res; 2011 May; 81(3):252-60. PubMed ID: 21255589
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemodynamic analysis of capillary in finger nail-fold using computational fluid dynamics and image estimation.
    Shih TC; Zhang G; Wu CC; Hsiao HD; Wu TH; Lin KP; Huang TC
    Microvasc Res; 2011 Jan; 81(1):68-72. PubMed ID: 21047523
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.