BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16624476)

  • 1. Electron-transfer mechanism of the triplet state quenching of aluminium tetrasulfonated phthalocyanine by cytochrome c.
    Laia CA; Costa SM; Vieira Ferreira LF
    Biophys Chem; 2006 Jul; 122(2):143-55. PubMed ID: 16624476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metalloprotein association, self-association, and dynamics governed by hydrophobic interactions: simultaneous occurrence of gated and true electron-transfer reactions between cytochrome f and cytochrome c(6) from Chlamydomonas reinhardtii.
    Grove TZ; Kostić NM
    J Am Chem Soc; 2003 Sep; 125(35):10598-607. PubMed ID: 12940743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of zinc tetrasulfonated phthalocyanine with cytochrome C in water and Triton-X 100 micelles.
    Laia CA; Costa SM
    J Phys Chem B; 2008 Apr; 112(14):4276-82. PubMed ID: 18348558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase.
    Mei H; Wang K; Peffer N; Weatherly G; Cohen DS; Miller M; Pielak G; Durham B; Millett F
    Biochemistry; 1999 May; 38(21):6846-54. PubMed ID: 10346906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway.
    Crnogorac MM; Shen C; Young S; Hansson O; Kostić NM
    Biochemistry; 1996 Dec; 35(51):16465-74. PubMed ID: 8987979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway.
    Pieulle L; Morelli X; Gallice P; Lojou E; Barbier P; Czjzek M; Bianco P; Guerlesquin F; Hatchikian EC
    J Mol Biol; 2005 Nov; 354(1):73-90. PubMed ID: 16226767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of formation and dissociation of the high-affinity complex between cytochrome c and cytochrome c peroxidase by ionic strength and the low-affinity binding site.
    Mei H; Wang K; McKee S; Wang X; Waldner JL; Pielak GJ; Durham B; Millett F
    Biochemistry; 1996 Dec; 35(49):15800-6. PubMed ID: 8961943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide-protein interactions: photoinduced electron-transfer within the preformed and encounter complexes of a designed metallopeptide and cytochrome c.
    Lasey RC; Liu L; Zang L; Ogawa MY
    Biochemistry; 2003 Apr; 42(13):3904-10. PubMed ID: 12667081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic and structural contributions of critical surface and internal residues to cytochrome c electron transfer reactivity.
    Rafferty SP; Guillemette JG; Berghuis AM; Smith M; Brayer GD; Mauk AG
    Biochemistry; 1996 Aug; 35(33):10784-92. PubMed ID: 8718869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic reaction center mimicry: low reorganization energy driven charge stabilization in self-assembled cofacial zinc phthalocyanine dimer-fullerene conjugate.
    D'Souza F; Maligaspe E; Ohkubo K; Zandler ME; Subbaiyan NK; Fukuzumi S
    J Am Chem Soc; 2009 Jul; 131(25):8787-97. PubMed ID: 19505071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Applicability of molecular electrostatic interaction models to describing ionic strength dependence of reaction rate between myoglobin and cytochrome c].
    Komarov IuE; Sivozhelezov VS; Postnikova GB
    Biofizika; 1998; 43(1):16-25. PubMed ID: 9567172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the rates and the activation parameters for the forward reaction between the triplet state of zinc cytochrome c and cupriplastocyanin and the back reaction between the zinc cytochrome c cation radical and cuproplastocyanin.
    Ivković-Jensen MM; Ullmann GM; Crnogorac MM; Ejdebäck M; Young S; Hansson O; Kostić NM
    Biochemistry; 1999 Feb; 38(5):1589-97. PubMed ID: 9931026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proton and electron transfer in the excited state quenching of phenosafranine by aliphatic amines.
    Broglia MF; Bertolotti SG; Previtali CM
    Photochem Photobiol; 2007; 83(3):535-41. PubMed ID: 17576369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the electron transfer interface between cytochrome b5 and cytochrome c.
    Ren Y; Wang WH; Wang YH; Case M; Qian W; McLendon G; Huang ZX
    Biochemistry; 2004 Mar; 43(12):3527-36. PubMed ID: 15035623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of thiouredopyrenetrisulfonate photochemistry for driving electron transfer reactions in aqueous solutions.
    Kotlyar AB; Borovok N; Hazani M
    Biochemistry; 1997 Dec; 36(50):15823-7. PubMed ID: 9398313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and theoretical investigations on effective and selective interaction of fullerenes C60 and C70 with a derivatized Zn-phthalocyanine: stabilization of charge-recombined state by side-on approach of C70.
    Ray A; Santhosh K; Chattopadhyay S; Samanta A; Bhattacharya S
    J Phys Chem A; 2010 May; 114(17):5544-50. PubMed ID: 20377215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of a ruthenium-labeled cytochrome c derivative to study electron transfer with the cytochrome bc1 complex.
    Engstrom G; Rajagukguk R; Saunders AJ; Patel CN; Rajagukguk S; Merbitz-Zahradnik T; Xiao K; Pielak GJ; Trumpower B; Yu CA; Yu L; Durham B; Millett F
    Biochemistry; 2003 Mar; 42(10):2816-24. PubMed ID: 12627947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulated growth of Saccharomyces cerevisiae by altering the driving force of the reactions of cytochrome c: Marcus' theory in vitro and in vivo.
    Komar-Panicucci S; Sherman F; McLendon G
    Biochemistry; 1996 Apr; 35(15):4878-85. PubMed ID: 8664279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysics of indole-2-carboxylic acid (I2C) and indole-5-carboxylic acid (I5C): heavy atom effect.
    Kowalska-Baron A; Gałęcki K; Wysocki S
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():183-95. PubMed ID: 23933843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of photoinduced electron transfer in zinc phthalocyanine-perylenediimide dyad and triad by the magnesium ion.
    Fukuzumi S; Ohkubo K; Ortiz J; Gutiérrez AM; Fernández-Lázaro F; Sastre-Santos A
    J Phys Chem A; 2008 Oct; 112(43):10744-52. PubMed ID: 18834094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.